
Stealing Zero-Thresholding Neural Network Data using Timing
Channel

Mulong Luo
Cornell University

Ithaca, NY
ml2558@cornell.edu

G. Edward Suh
Cornell University

Ithaca, NY
suh@csl.cornell.edu

ABSTRACT
Pruning is becoming a popular solution to reduce the complexities
of neural network inference on embedded systems. Among different
pruning implementations, zero thresholding dynamically identifies
close-to-zero input values and skips respective multiply-accumulate
(MAC) operations. The time differences reveal the ranges of the
values. In this paper, we identify the timing channel by measuring
the time of MAC and skip sequences and provide theoretical analy-
sis on it. Then, we demonstrate both ideal and practical attacks to
reveal the information processed by the neural network, and we
test our attacks on real dataset. Our results are helpful for guiding
secure neural network implementation.
ACM Reference format:
Mulong Luo and G. Edward Suh. 2021. Stealing Zero-Thresholding Neural
Network Data using Timing Channel. In Proceedings of Technical report, , ,
6 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Deep neural networks are increasingly utilized in numerous ap-
plication scenarios, e.g., image recognition, voice recognition, and
natural language processing. Given their broad applications, people
are deploying neural networks in a wide range of platforms, from
warehouse data centers to embedded and mobile devices such as
smartphones and robots. However, deep neural network models
contain a large number of parameters, and often take to significant
time and energy to compute. Especially, on embedded devices with
limited computation resources and energy, running inference on a
large scale neural network poses significant challenges.

In order to reduce the computation requirements of neural net-
works, pruning, i.e., removing connections or neurons inside the
neural network have been proposed. There are two mainlines of
pruning methods, static pruning [5] permanently removes the con-
nections/neurons with small values after training of the neural
network, and for all the input images involved in the inference
phase, the MAC computations in pruned connections/neurons are
omitted. On the other hand, dynamic pruning [12], or zero thresh-
olding, does not touch the original neural network, but dynamically

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Technical report, ,
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

omit certain MACs depending on the value of the input of the neu-
ral network. For each layer of neural network, if the absolute value
of value in the input feature map is smaller than a certain threshold,
the MAC operation is omitted. It is claimed that zero threshold-
ing can generally reduce power consumption by 50% and improve
performance by 30% compared to the state-of-the-art accelerator
without loss of accuracy [2]. Compared to the static pruning, which
modifies the underlying architecture of the neural network, zero
thresholding brings energy and performance benefits with modest
implementation overhead (4% increase for chip area was reported).
Since it does not need to change the neural network architecture,
it is naturally compatible with most other neural network accelera-
tion algorithms (e.g., quantization, singular-value decomposition,
Fourier transform) and accelerator fabrics.

While zero thresholding improves performance and energy effi-
ciency, it also creates a new side channel that leaks information on
the data processed by the neural network. Especially, the timing
and power consumption of each MAC operation becomes a binary
indicator of whether the input value corresponding to the MAC is
greater than the threshold value. By recovering the input of a layer
of a neural network, an attacker may infer the output of the neural
network without direct access the content of the data. This poses
serious security threat to embedded systems using neural network,
especially those devices that process sensitive data (e.g., personized
medical data).

Unfortunately, the capabilities and limitations of the information
leakage through the side channel in neural networks remain largely
unexplored. Compared to traditional side channels that aims at
accurately recovering secrets [8], the fuzzy nature of neural network
provides more error tolerance in side channel attacks, and we may
be able to recover and correctly infer the output even in the presence
of errors. It is quantitatively unclear how this fuzzy naturewill affect
the amount and the correctness of the side channel attack. In this
paper, we investigate how we can recover the inference label of a
zero-thresholding neural network leveraging a timing channel.

The main contributions of this paper are as follows:

(1) We provide theoretical foundations and analysis of the tim-
ing characteristics of the inference of a dynamically pruned
(zero thresholding) neural network.

(2) We demonstrate the validity of the proposed attack on re-
covering neural network output labels.

(3) We provide guidelines on neural network design and soft-
ware and hardware implementations to prevent this timing
channel attack.

The rest of the paper is organized as follows. First, in Section 2,
we give the background information. In Section 3, we show the
mathematical analysis of the timing of the pruned neural network,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Technical report, , Mulong Luo and G. Edward Suh

Figure 1: General neural network architecture with a fully
connected layer, a ReLU, and a pooling layer.

as well as the theory on how we can exploit this timing charac-
teristics to perform timing channel attacks. In Section 4, we show
our results on the validity of the attacks to infer the input and the
respective output labels of neural network from timing channel
and discuss the qualities of the results. In Section 5, we discuss the
result. In Section 6, the related work is briefly discussed. Finally, in
Section 7 we conclude the paper.

2 BACKGROUND
In this section, we provide background information on neural net-
work acceleration and information leakage through side channel.

2.1 Neural Networks Acceleration
A neural network is a dataflow system composed of one or several
layers of neurons with each layer connected by synapses. The input
of a neural network is a vector. For each layer, matrix multiplication
or convolution operations are performed, followed by pooling and
non-linear activation. The output of a neural network is usually
a vector indicating the possibility that the input vector belongs
to each class. Figure 1 shows a representative architecture of a
neural network. For many applications including image-based ap-
plications, convolutional neural networks (CNNs) are widely used.
Compared to other types of neural networks such as multilayer
perceptron, A CNN has one or several layers called convolutional
layers. A convolutional layer moves a small region (receptive field)
around the entire input feature map and performs an inner product
of the receptive field with a given tensor (a set of 3D filters), for
each receptive field and one filter, a single value is generated by the
inner product, by moving around the receptive field and use dif-
ferent filters, the outputs form multiple 3D tensors (output feature
maps). Compared to fully connected layers, the convolutional layers
account for most of the MACs while occupy less storage since the
weights in the convolutional filters are reused for receptive fields
in different positions.

Due to the high computation complexity compared to traditional
statistic models, static pruning of CNN has been proposed [6],
made practical in large scale CNNs and deployed on hardware
[5]. However, Static pruning alone, while reducing the size of the
storage, does not significantly reduce the computation time for
CNN for two reasons:

(1) Most of the pruned weights are in fully-connected layers,
while a larger portion of MACs happen in convolutional
layers. Reducing weights in fully-connected layers does not
reduce the number of MAC operations significantly.

(2) The computation time is determined by the critical path,
while pruning removes MACs, it does not maintain the reg-
ularity of CNN after pruning. Thus, the computation on the
critical path is not necessarily reduced.

To conquer the drawbacks of static pruning, people proposed dy-
namic pruning (a.k.a. zero skipping[2], dynamic operation pruning[12]
or skip MAC[11]), where if the value of a input feature map is
smaller than certain threshold (close to zero), the respective MAC
is skipped. In this paper, we will refer to this technique as zero
thresholding. Zero thresholding accelerates the CNN operations
dominated by convolutional layers. Since a large portion of input
feature map values in convolutional layers are often below the
threshold, the amount of computation is reduced. Besides, since the
size of matrix multiplication in convolutional layers is smaller, it is
more likely that the length of the critical path is reduced compared
to convolutional layers.

While zero thresholding improves CNN performance, the secu-
rity implication may become a concern. In particular, zero thresh-
olding introduces new side channels that leak information on the
CNN and the data being processed.

2.2 Side Channel Attacks
In traditional encryption system, side-channel attack often use in-
formation leaks through physical characteristics such as power
consumption and timing of operations to infer a secret. For ex-
ample, timing channels use the timing variation in the system to
infer secrets such as AES and RSA keys [8]. A power side channel,
which measures the power consumption of the system during the
processing [15], is another popular example.

Consider a CNN f : Rm → Rn

−→y = f (−→x) (1)

where−→x ∈ Rm is the input of neural network (e.g., input image) and
−→y ∈ Rn is the output vector indicating the classification probability.
For CNN, usually the dimension of the inputm is two orders of
magnitude larger than the output n and is generally considered
invertible. We define a side channel дf : Rm → Rl

−→s = дf (−→x) (2)

where −→s ∈ Rl is the observation from the side channel. Depending
on the implementation of f and the side channel that is used, the
effective dimension of s varies, we can increase the dimension
by observing under different conditions. However, it is generally
considered very rare that д is invertible. Thus, it is not feasible to
completely recover the original input from the side channel and
use that for CNN classification.

However, for each given −→x , we can evaluate ordered pair
(дf (−→x), f (−→x)), by carefully selecting the side channel, and establish
a model hf ,д : Rl → Rn :

−→
y′ = hf ,д(−→s) (3)

This gives us an indication on what is being processed by a CNN.
Leveraging this side channel, we can steal sensitive information
used by the neural network. For example, health data collected
on a smartphone might be used for disease diagnosis based on a
neural network. A side-channel attaack may steal the diagnosis

Stealing Zero-Thresholding Neural Network Data using Timing Channel Technical report, ,

Original	Image

Recovered Image

CNN with Zero
Thresholding

CNN

Original	
Inference	
Label:	‘3’

Recovered	
Inference	
Label:	‘3’

Timing	channel

Figure 2: The attack scenario.

result using the timing side channel, and leaks important personal
information.

3 THEORY
In this section, the theory for potential side-channel attacks on a
CNN is presented.

3.1 Threat Model
We consider the case where a victim CNN with zero thresholding is
running on a CPU, and the inputs and the outputs of the CNN are
not directly visible to the attacker. The attacker knows the structure
and the weights of the CNN model and can measure the time it
takes for the CNN to perform MAC operations. If the input value is
smaller than the threshold, the MAC is skipped and the time will be
short, otherwise the time will be longer. Using this timing variation,
the attacker will try to recover the output of the victim CNN. An
attacker may be able to observe the timing of a MAC operation
in multiple ways. For example, timing channels on shared caches
[10] reveal memory accesses. Hardware tampering [7] may observe
memory accesses corresponding to MAC operations. Power con-
sumption may also reveal whether each MAC operation is skipped
or not.

Figure 2 shows the attack scenario discussed in this paper. For
normal neural network inference the original image is given to the
zero-thresholding CNN and the inference is performed. While the
attacker cannot see the either the original image or the original
inference label, he or she is able to observe the timing information
through the aforementioned side channel. Through this timing
channel, we recover the input image, and run the original CNN
model on the recovered image to infer the output of the victim.

3.2 Zero Thresholding in CNN
Here we discuss the zero thresholing implementation in convolu-
tional layers in CNN. We consider a single convolution layer with
the dimension of input feature map Ih × Iw × Id , output feature
mapOd ×Oh ×Ow and kernel size Kh ×Kw × Id ×Od . Table 1 we
describe the notations that is used for this work.

Algorithm 1 shows the convolution operation in zero-thresholding
CNN.The inner most two nested loops compute the inner product
of one layer of the receptive field with one layer of one convolution
filter. The computations are repeated for a different layer of the
receptive field, different convolution filter, and different positions of
the receptive field. The zero thresholding is performed in the inner

Symbol Meaning
Ih,w,d height/width/depth of the input feature map
Kh,w height/width of the convolution filter
sh,w stride of convolution filter in vertical/horizontal direction

Oh,w,d height/width/depth depth of the output feature map
Ein,k,out original input feature map/kernel/output feature map
Er ecoverin,out recovered input/output feature map

TH threshold for neural network inference
Table 1: Notation of this work

most loop where the value of the input feature map is compared
with the threshold value T , only if it is greater than the threshold
will the MAC be performed.

Algorithm 1 Convolutional operation in zero-thresholding CNN
1: Input: Ek , Ein
2: Output: Eout
3: Eout := 0
4: for all i in 1...Od do
5: for all j in 1...Id do
6: for all k in 1...Oh do
7: for all p in 1...Ow do
8: S := 0
9: for all q in 1...Kh do
10: for all r in 1...Kw do
11: if Ein (k + q, p + r, j) > T then
12: S := S + Ekernel (q, r, j, i) × Ein (k + q, p + r, j)
13: end if
14: end for
15: end for
16: Eout (k, p, i) := Eout (k, p, i) + S
17: end for
18: end for
19: end for
20: end for

3.3 Acquiring Timing Information
There are many ways to acquire the timing information from
the side channel. There are mostly-classified into two categories.
Hardware-based approaches and software-based approaches.

For software-based approaches, one possible way of get the
timing information is to use a cache timing channel[10] in which
we constantly modify the cache from another core that shares the
same cache with the core running the neural network inference.

For hardware-based approaches, two ways are equally feasible.
First, by measuring the power consumption of the computing unit
or memory, we can identify the time it takes to compute each layer
of the CNN. The traces also reveal the number of computation in
each unit time. When more input values are thresholded, there will
be less computations. The memory trace also reveals information
on the execution of the neural network. By attaching wires on the
memory bus and identifying the read-after-write patterns, we can
locate which memory addresses are used for weights, inputs, and
partial sums. We can then recover the input image based on this
memory access patterns.

3.4 Ideal Attack Analysis
By checking the timing of the innermost loop in Algorithm 1, we
can infer where MAC is performed. With this sequence, we are able
to recover the original input value of Ein (k +q,p + r , j) thresholded
by T . In this way, the recovered input feature map Er ecoverin (k,p, j)
would be

Er ecoverin (k,p, j) =

{
1, if Ein (k,p, j) > T
0, otherwise

(4)

Technical report, , Mulong Luo and G. Edward Suh

However, noise or other factors may prevent us from getting
every bits of MAC skip patterns. Consider that we can only get the
timing granularity outside the inner most two loops (i.e., one 2D-
layer of convolutional filters), the height and width of the recovered
feature map would be smaller, reducing from Iw × Ih to Ow ×

Oh . The relationship of the recovered reduced-size feature map
E ′in,r ecovered (k

′,p′, j) and the original feature map would be

E ′r ecoverin (k ′,p′, j) =

{
1, if

∑
k<Kh,p<Kw Ein (k,p, j) > Kh · Kw ·T

0,otherwise
(5)

On the other hand, we need input feature map of the same size as
the original feature map, so that we could perform neural network
inference using the neural network of the same structure. This
could be done by overlaying the recovered reduced feature map
to original input feature map space. For each pixel in the original
feature map space, the value is calculated by following equations

Er ecoverin (k,p, j) =

∑
E ′r ecoverin (k ′,p′, j)

N
(6)

where N is the number of overlapped recovered feature maps
covering that pixel.

3.5 Attack Algorithm Implementation
Consider that given the an array representing the time of inner
most loop tj , the threshold time tTH , we recover the input feature
map of the particular layer.

Algorithm 2 Recovering input from zero-thresholding CNN
1: Input:tj , 1 ≤ j ≤ OhOwKhKw and tTH , layer i
2: Output: Er ecoverin
3: for all k in 1...Oh do
4: for all p in 1...Ow do
5: tsum := 0
6: for all q in 1...Kh do
7: for all r in 1...Kw do
8: tsum := tsum + t(k×Ow +p)×Kh×Kw +q×Kw +r
9: end for
10: end for
11: Er ecoverin (k, p, i) := 0
12: if tsum > tTH then
13: for all q in 1...Kh do
14: for all r om 1...Kw do
15: Er ecoverin (k × sh + q, p × sw + r, i) := Er ecoverin (k × sh + q, p ×

sw + r, i) + 1
16: end for
17: end for
18: end if
19: end for
20: end for

Algorithm 2 shows the attack algorithm. We consider layer i
of the input feature map. Er ecoverin is initialized with zero. Line 6-
Line 10 calculates the total time to compute the MACs for one
layer of filter at one particular receptive field location. If the time is
greater than the threshold time tTH , all the pixels of the receptive
field in that layer is incremented by 1. The recovered input can then
be normalized to fit in the input range of CNN, and the normalized
input can be used to recover labels.

3.6 Metrics
In order to see the effectiveness of this attack, we identify two
metrics. The first metric ACC1 is defined as:

ACC1 =
#recovered labels matching orig label

#total labels
(7)

The second metric ACC2 is defined as:

ACC2 =
#recovered labels matching correct label

#total labels
(8)

For these two metrics, the label is defined as the top-1 class in the
CNN output vector, if the top-1 class in the recovered inference
matches the top-1 class in the original inference or the label given by
the dataset, we count it as a match. ACC1 reflects the the capability
of attack in recovering original CNN output, while ACC2 reflects
the capability to match correct prediction. For a reasonable model,
the original CNN inference label should be close to the label given
by the dataset, however, in reality, this could be different.

4 EXPERIMENTS SETUP AND RESULTS
We implement the zero-thresholding CNN using tiny-dnn[1]. We
use the MNIST handwritten digit dataset for testing and we use
LeNet-5 [9] as the neural network. All the experiments are com-
pleted on a two-core Intel Core-i5 CPU operating at the frequency
of 2.6GHz with hyperthread enabled with 4GB memory.

4.1 Timing Measurement
We record the value RDTSC register in the x86 processor to record the
cycle count of the innermost loop in convolutional layers. Figure 3
shows the cycle counts for innermost loops for number “2” and “7”.
We clearly see different characteristics for different numbers.

Figure 3: Cycle count of the innermost loop of the first 19600
loops for inputs respective to number “2” (top) and “7”(bot-
tom).

4.2 Ideal Attack Experiments
LeNet-5 is a CNN with five layers of neurons. The first two layers of
connections (i.e., connection between input and the first layers of
neurons, and the connection between first and second hidden layers
of neurons) are convolutional layers, while the last two layers of
connections are fully connected layers. We observe the timing of
the inner most loop in Algorithm 1 for first convolutional layers
(i.e., the connections between input and first hidden layers). Using
this channel, we recover the input image of LeNet and we then
perform inference, thus guessing the original inference label of the
CNN. The range of input is normalized to range between 0 and 1
and each value is quantized with 8 bits.

Stealing Zero-Thresholding Neural Network Data using Timing Channel Technical report, ,

Recovery by pixel: as mentioned in Section 3.4, recovering the
input data based on the timing channel of zero threshold neural
network can be modeled as filtering the original input feature map
with a threshold. The recovered input data can then be used for
inference to recover the prediction label.

Table 2 shows the prediction accuracy of the CNN with different
threshold values. Since the input image is normalized between 0
and 1 and is quantized with 8 bits, the minimal threshold change
that make a difference would be 1

28 ≈ 0.004, thus we select the
values as shown in the table. The accuracy is calculated using the
MNIST testing set containing 10000 samples. The original model
used to calculate ACC1 and ACC2 is LeNet-5 trained on MNIST
training set with accuracy of 96.56% on the testing set. In this
study, the recovered input is simply computing using Equation (4),
and is directly given to the original LeNet-5 for inference. The
study represents the ideal case where an attack can obtain perfect
information on each MAC operation. For retraining, we start with
original LeNet-5 and use the recovered images and the correct labels
in the training set, we retrain for one epoch.

TH ACC1 ACC2 ACC1 ACC2
w/ retrain w/ retrain

0.005 93.27% 92.16% 91.95% 91.24%
0.01 93.37% 92.28% 92.64% 92.00%
0.05 94.27% 93.25% 94.68% 94.08%
0.1 94.97% 93.79% 93.48% 92.98%
0.5 97.77% 95.90% 94.31% 93.95%
0.9 96.69% 95.00% 91.57% 90.78%
0.95 94.43% 92.97% 91.98% 91.15%
0.99 82.38% 81.64% 87.44% 86.54%
0.995 41.73% 41.22% 63.17% 62.42%

Table 2: Experimental result on attack recovering based on
Equation (4).

From Table 2, we can see that the accuracy is highest when
threshold is around 0.5, and drops to around 40%when the threshold
is 0.995. Intuitively, when the threshold is high, there will be less
black pixels, and the black lines may break, leading to significant
accuracy drop. Since the accuracy of original model is high, the
difference between ACC1 and ACC2 is small for all thresholds. We
observe that retraining is helpful to improve the accuracy when the
original accuracy is low, but the accuracy degrades a little when
the original accuracy before training is high.
Recovery by filter: as described in Equation (5), it is also possible
to recover one input image only from the total cycle count per
layer of the convolutional filter. Compared to Table 2, the accuracy
achieved without retraining is low. Thus, we apply retraining (with
5 and 10 epochs) with the correct labels from the training set. We
can see from the result that retraining helps increase the accuracy.
However compared to recovery by pixel, when setting a high TH ,
the accuracy after retraining is still lower. This can be explained
from the fact that by thresholding the entire receptive field rather
than individual pixels inside the receptive field, much of the in-
formation is wiped out at a high threshold. Thus, it is difficult to
recover the input image.

TH epoch=0 epoch=5 epoch=10
ACC1 ACC2 ACC1 ACC2 ACC1 ACC2

0.005 17.40% 17.49% 90.66% 90.55% 91.96% 92.18%
0.01 18.58% 18.70% 90.83% 90.45% 91.97% 91.98%
0.05 25.03% 25.19% 91.07% 90.67% 91.89% 91.84%
0.1 38.28% 38.16% 87.08% 86.47% 88.66% 88.11%
0.5 22.57% 22.57% 56.48% 56.05% 58.41% 58.12%
0.9 13.98% 14.00% 31.90% 31.72% 32.45% 32.28%
0.95 13.92% 13.95% 31.43% 31.31% 31.89% 31.72%
0.99 13.92% 13.95% 31.52% 31.41% 32.11% 31.94%
0.995 13.92% 13.95% 31.52% 31.41% 32.11% 31.94%

Table 3: Experimental result on attack recovering based on
Equation (5).

TH tTH
no retrain epoch=5

ACC1 ACC2 ACC1 ACC2

20 25.76% 25.68% 26.07% 26.15%
0.05 30 57.88% 57.25% 52.20% 51.97%

40 17.27% 17.05% 17.01% 16.81%
20 19.84% 19.81% 24.80% 24.52%

0.5 30 13.60% 13.69% 16.09% 16.03%
40 22.83% 22.76% 27.75% 27.58%

Table 4: Experiment result of attack using Algorithm 2.

4.3 Timing Attack
To understand the effectiveness of the attack under more realis-
tic, noisy environment, we perform the timing attack on LeNet-5
using recorded timing information. We use Algorithm 2 for the
first layer of the first convolutional filter of the first layer LeNet
(Oh = Ow = 28, Kh = Kw = 5), we use two zero-thresholding
LeNet-5 threshold with TH = 0.05 and TH = 0.9. The values of
tTH used in Algorithm 2 are chosen based on our observations of
average cycle count.

Table 4 shows the result of the timing attack. We use threshold
TH value of 0.05 and 0.5. Then we perform the inference and get
the cycle count trace. Using tTH of 20, 30, and 40 cycles, we recover
the input images. We then use these images for inference, without
retraining CNN or with 5 epochs of retraining. The accuracy is
generally lower than the those in Table 2 and Table 3, probably
due to the noise in real-world timing measurements. However,
for appropriate TH and tTH values, we can still achieve over 50%
accuracy for recovering the inference labels.

5 DISCUSSIONS
5.1 Performance-Security Trade-off
With a higher threshold for zero thresholding, less MACs are com-
puted and the CNN computation takes less time. This leads to a
lower energy consumption and better performance. The accuracy
of the CNN largely remains unchanged as threshold increases, then
the accuracy drops for high threshold values. The attack accuracy
will first increase with threshold then decrease with it. CNN de-
signers who decide the threshold value would want to maximize
performance while minimizing the accuracy of the side-channel
attack. While we expect increasing the threshold to improve the
performance, if security is a concern and we would want to bound
the attack accuracy, we may need to lower the threshold. This leads
to a performance penalty. If we set the threshold to be zero, no

Technical report, , Mulong Luo and G. Edward Suh

MAC operation will be removed and the timing channel can be
eliminated.

5.2 Implication on Neural Network
Implementation

Base on the result, we provide several implications on how to design
and implement neural network securely.

(1) Reduce the time dependency in neural network design and
implementation. By waiting a constant time during skipping
of a MAC, we still get the benefit of saving energy, though
we may lose some benefit of saving time.

(2) Avoid time dependent hardware. Some floating point oper-
ations are known for having timing channel that leaks the
input value [3]. For neural network security, it is suggested
that these hardware be avoided.

(3) Isolate neural network execution. Either deploying it on ded-
icated hardware or allocate partitioned hardware resource
(core, cache, and memory) will help closing detectable side
channels from adversaries.

6 RELATEDWORK
6.1 Attack on Models
Rather than aiming at neural network input or output data, other
works seek to steal the models. Due to the multilayer nature and
large number of parameters, successful stealing of neural network
based on side-channel has not been demonstrated. However, this
it done for other machine learning models. In [14], decision tree
model inside the cloud is revealed by legal API queries to the model.
This implies possibility to reveal at least partial information of
neural network based on continuously query.

6.2 Inference Phase CNN Data Protection
To protect information leakage on neural network data, especially
when a user outsource its data to the untrusted neural network
and let it process the data, homomorphic encryption is used[4].
The results show negligible overhead. However, this scheme uses
a partially homomorphic encryption which limits the depth of
operations we can perform on encrypted data, and may not be
efficient for larger networks such as GoogleNet or AlexNet.

6.3 Training Phase CNN Data Protection
Our attack is performed during CNN inference. Data protection in
CNN training is also important. Data sharing is also a big concern
when training the neural network. Neural network training involves
back-propagation, and encrypting input data will make this process
meaningless. To effectively train the neural network, the trainer
have to know something related to the plaintext of data, but sharing
plaintext is sometimes not desirable. To resolve this issue, in [13],
privacy-preserving deep learning is proposed to train the neural
network using input from different sources but without sharing
input data to the others. The key idea is that instead of sharing
the input data directly, we selectively share part of the trained
weights to the others so that others can benefit from the result of
the training by our private data.

7 CONCLUSION
In this paper, we provide theoretical foundations and studies on a
new timing channel attack on neural networkswith zero-thresholding,
which skip MAC operations depending on the input values. We
demonstrate both theoretical and practical attacks to reveal the
information processed by the neural network. The experimental
results suggest that attackers can guess the inference output of
a CNN with a reasonble accuracy. Our future direction includes
demonstrating the attack onmore practical settings using cache and
memory side channels, studying attacks on custom accelerators,
and developing protection mechanisms.

REFERENCES
[1] 2017. tiny-dnn: header only, dependency-free deep learning framework in C++14.

http://tiny-dnn.readthedocs.io
[2] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright

Jerger, and Andreas Moshovos. 2016. Cnvlutin: ineffectual-neuron-free deep
neural network computing. In Computer Architecture (ISCA), 2016 ACM/IEEE 43rd
Annual International Symposium on. IEEE, 1–13.

[3] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin Lerner,
and Hovav Shacham. 2015. On subnormal floating point and abnormal timing.
In Security and Privacy (SP), 2015 IEEE Symposium on. IEEE, 623–639.

[4] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. CryptoNets: Applying Neural Networks to Encrypted
Data with High Throughput and Accuracy. In Proceedings of the 33rd International
Conference on International Conference on Machine Learning - Volume 48 (ICML’16).
JMLR.org, 201–210. http://dl.acm.org/citation.cfm?id=3045390.3045413

[5] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz,
and William J Dally. 2016. EIE: efficient inference engine on compressed deep
neural network. In Proceedings of the 43rd International Symposium on Computer
Architecture. IEEE Press, 243–254.

[6] Babak Hassibi and David G Stork. 1993. Second order derivatives for network
pruning: Optimal brain surgeon. In Advances in neural information processing
systems. 164–171.

[7] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and
Dongjun Shin. 2016. Compression of deep convolutional neural networks for
fast and low power mobile applications. (2016).

[8] Paul C Kocher. 1996. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Annual International Cryptology Conference. Springer,
104–113.

[9] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[10] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-
level cache side-channel attacks are practical. In Security and Privacy (SP), 2015
IEEE Symposium on. IEEE, 605–622.

[11] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-
harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W Keckler, and
William J Dally. 2017. SCNN: An Accelerator for Compressed-sparse Convolu-
tional Neural Networks. In Proceedings of the 44th Annual International Symposium
on Computer Architecture. ACM, 27–40.

[12] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee,
Sae Kyu Lee, José Miguel Hernández-Lobato, Gu-Yeon Wei, and David Brooks.
2016. Minerva: Enabling low-power, highly-accurate deep neural network acceler-
ators. In Proceedings of the 43rd International Symposium on Computer Architecture.
IEEE Press, 267–278.

[13] Reza Shokri and Vitaly Shmatikov. 2015. Privacy-preserving deep learning. In
Proceedings of the 22nd ACM SIGSAC conference on computer and communications
security. ACM, 1310–1321.

[14] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
2016. Stealing Machine Learning Models via Prediction APIs.. In USENIX Security
Symposium. 601–618.

[15] Weize Yu, Orhun Aras Uzun, and Selçuk Köse. 2015. Leveraging on-chip voltage
regulators as a countermeasure against side-channel attacks. In Design Automa-
tion Conference (DAC), 2015 52nd ACM/EDAC/IEEE. IEEE, 1–6.

http://tiny-dnn.readthedocs.io
http://dl.acm.org/citation.cfm?id=3045390.3045413

	Abstract
	1 Introduction
	2 Background
	2.1 Neural Networks Acceleration
	2.2 Side Channel Attacks

	3 Theory
	3.1 Threat Model
	3.2 Zero Thresholding in CNN
	3.3 Acquiring Timing Information
	3.4 Ideal Attack Analysis
	3.5 Attack Algorithm Implementation
	3.6 Metrics

	4 Experiments Setup and Results
	4.1 Timing Measurement
	4.2 Ideal Attack Experiments
	4.3 Timing Attack

	5 Discussions
	5.1 Performance-Security Trade-off
	5.2 Implication on Neural Network Implementation

	6 Related Work
	6.1 Attack on Models
	6.2 Inference Phase CNN Data Protection
	6.3 Training Phase CNN Data Protection

	7 Conclusion
	References

