
752168-2356/20©2020 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCSeptember/October 2020

Editor’s notes:
This article studies the impacts of physical variations on neural networks.
The proposed studies reveal an important observation that both multiple-
layer perceptron (MLP) and convolutional neural network (CNN) may fail
to operate appropriately even with small variations (e.g., voltage droops
as small as 20 mV). Robust neural network architectures, including
binarized neural network (BNN) and local binary pattern network (LBPNet),
are explored to address this variability issue that has become a major
bottleneck for practical applications.

—Xin Li, Duke University

 Neural network (NN) algorithms have found
use in a wide range of applications such as medical
diagnostics, image classification, speech recogni-
tion, and natural language processing. This versatil-
ity has led to their implementation on a variety of
hardware platforms: GPU, FPGA, and ASIC.

With the continuous scaling of CMOS technology,
the underlying transistors in all these implementations
are increasingly susceptible to variations in manufac-
turing and operating conditions. Dynamic variations in
microelectronic systems, which are the main focus of
this article, are caused by environmental factors such
as supply voltage droops and temperature fluctuations.
Voltage droops are caused in response to instantaneous

Vulnerability of Hardware
Neural Networks to
Dynamic Operation
Point Variations
Jeng-Hau Lin
Qualcomm, Inc.

Xun Jiao
Villanova University

Digital Object Identifier 10.1109/MDAT.2020.2986742
Date of publication: 9 April 2020; date of current version:
7 October 2020.

current fluctuations due
to activities on the power
delivery network. Tem-
perature fluctuation could
alter the circuit parame-
ters such as carrier mobil-
ity and threshold voltage.
Such variations can man-
ifest themselves as timing
errors, leading to incorrect
computation outputs and
system failures. Notwith-

standing setting up guardbands is the standard solution
to ensure the system’s functionality, the incomprehen-
sion of NNs’ vulnerability can derive overdesigned
guardbands encumbering the throughput of hardware
accelerators or GPUs.

Due to the ability to adapt NNs’ learnable param-
eters for extracting the abstract common features
in data, NNs have an inherent resilience to errors.
Thus, one would expect that the quality of results
produced by hardware NNs (HNNs) to be relatively
insensitive to the rising timing error rates (TERs)
caused by increased variation, thereby opening
doors for the opportunistic reduction of guardbands
to increase the operational efficiency of hardware.
There is a need for a quantitative assessment here
to explore the extent to which guardbands can be
reduced in HNNs. We investigate this question as to

Mulong Luo
Cornell University

Zhuowen Tu and Rajesh K. Gupta
University of California San Diego

Authorized licensed use limited to: University of Texas at Austin. Downloaded on November 28,2024 at 08:30:13 UTC from IEEE Xplore. Restrictions apply.

76 IEEE Design&Test

General Interest

whether and how much accuracy of HNNs could
be affected by dynamic variations. To do this, we
capture and represent variations from low-level
hardware, and then expose them to NN inferences.
Unlike logic errors that can be derived through a
mathematical formulation [2], variation-induced
timing errors can only be obtained using gate-level
simulation (GLS), making the error injection imple-
mentation time-consuming and not scalable.

Approach and contributions: We propose a cross-
layer approach to assess the vulnerability of HNNs
to dynamic voltage and temperature variations, in
which we extract the timing errors from the hard-
ware layer using GLSs and examine their effects on
the software layer using error injections. To eval-
uate the soundness of this approach, we measure
the timing errors using GLSs of postlayout circuits in
TSMC 45-nm technology. We vary the voltage and
temperature in a wide range to examine the effects
of variations. Then, we represent and inject these
timing errors to NNs during their inference. Finally,
we examine the resilience of four types of NNs: the
multilayer perceptron (MLP), the convolutional
NN (CNN), the binarized CNN (BCNN) [3], and the
local binary pattern network (LBPNet) [5], [6], by
testing them on the Modified National Institute of
Standards and Technology (MNIST) data set.

Based on our implementation and evaluation,
this article makes the following contributions.

•	 We extract the circuit-level timing errors caused
by voltage and temperature variations from 20
different operating conditions using GLSs.

•	 We inject such timing errors back into the NN
inference and evaluate the accuracy of the
MNIST data set under different conditions.

•	 Our results quantitatively show that variations
can significantly affect the inference accuracy
on NNs.

•	 Among the four subject networks, LBPNet pro-
vides the more reliable error immunity than the
other three networks.

Hardware neural networks
Modeled for neural processing, Figure 1 shows a

typical NN, an MLP consisting of an input layer, hid-
den layers, and an output layer. Except for the input
layer, all remaining layers are composed of artificial
neurons that represent the basic computation unit.
An artificial neuron consists of a linear processing
part followed by a nonlinear processing part. The lin-
ear part collects the output information, also know
as activations, from the previous layer, and the col-
lection method is a dot production between weights
and activations. The nonlinear part includes regular-
ization like dropout, and activation functions such
as logistic sigmoid, hyperbolic tangent, and rectilin-
ear unit (ReLU). The nonlinear activation function
enables an NN to be a universal function approxima-
tor. The forward–backward propagation algorithm
intelligently applies the chain rule of calculus and
gradient descent on NNs to train the weights and
hence minimizes the classification errors.

Since proposed in 1989, CNNs have pushed the
performance of NNs to a new realm. Figure 2 depicts
the internal processes in a convolutional (Conv)
layer with nine kernels, each of which consists of
three filters. The convolution operation models the
hardwired bonding between the neurons on adja-
cent layers. It uses a sliding filter to perform the
dot products of the filter and uses a portion of the
input image gradually to generate an output image,
namely the feature map. Since the convolution oper-
ations are differentiable, the filters can be trained to
capture the features of the input images with back-
ward propagation. Pooling is used to reduce the size
of a feature map and increase the reception area by
selecting the maximum pixel strength or averaging
several pixel strengths. It benefits the translation
invariance because it drops unnecessary minor
information and preserves the most dominant fea-
tures for the overall classification task.Figure 1. Example of a four-layer MLP NN.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on November 28,2024 at 08:30:13 UTC from IEEE Xplore. Restrictions apply.

77September/October 2020

The robustness of NNs comes from many aspects.
From a higher level point of view, the training process
of an NN model is an ensemble of multiple linear or
logistic regressions working in parallel. The regres-
sion ignores minor noises of the data and yields a
model for the most likely distribution of the given
data. Second, the regularization process inside an
NN also contributes to robustness because weights
are deterministically penalized if the tensor norms
grow too large and the connections can be dropped
stochastically to elude a network learning unwanted
noises. The weights are, thereby, trained to accommo-
date the majority of the data with the simplest prob-
able distribution. Moreover, if a re-training process
is involved, the convex optimization enforces the
learnable parameters in a model to descend on the
error surface again. Please note that we only assess
the inference performance in this work without per-
forming any re-training.

Binarized NN (BNN) [3] was proposed as an
extreme case of network quantization. During the
training phase, it maintained two sets of weights:
The one set of weights contained floating-point num-
bers to guarantee a smooth gradient descent, and
the other set was the binarized one obtained by a
hard-hyperbolic tangent function that returned “+1”
if the input was positive; otherwise, returned “−1.”
The forward propagation used the binarized weights
to predict network output and calculate loss, and

the backward propagation relied on the floating
weights to descend the model on a smooth error
surface. Whenever the floating-numbered weights
got updated, they were binarized and stored in the
binarized weights. However, given that the binarized
weights cannot carry sufficient information for most
classification tasks, a small number of floating num-
ber calculations were introduced to compensate
for the information loss, i.e., both bias addition and
batch normalization were in floating numbers.

An LBPNet [5], [6], as shown in Figure 3, was pro-
posed as an alternative deep learning method to CNN
for optical character recognition tasks. Instead of using
multiplication-and-accumulation (MAC) operations,
local binary pattern (LBP) operation [9] leveraged
sampling and comparison to efficiently capture fea-
tures. Gupta et al. [5] and [6] further introduced LBP
to deep learning by stacking the LBP layers together,
applying random projection to avoid channel accumu-
lation, and deriving the calculus chain rule to develop
LBPNet’s backward propagation. For optical character
recognition tasks, local binary pattern (LBP) Nets deliv-
ered near state-of-the-art classification accuracy while
reducing the computation demand and model size of
Conv layers by two to three orders of magnitudes. In
this work, we also binarized the fully connected (FC)
layers of an LBPNet for the test of vulnerability.

Hardware variations could impact HNNs through
timing errors in both computation logic and con-
trol logic. The errors in control logic could lead to

Figure 2. Processes among a Conv layer.

Figure 3. Detailed illustration of an LBP layer. Three
LBP patterns work like masks for sampling through
the pivot aperture (pvt) and sampling apertures
(samp). The comparison results are allocated to a
bit array according to the random projection map.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on November 28,2024 at 08:30:13 UTC from IEEE Xplore. Restrictions apply.

78 IEEE Design&Test

General Interest

catastrophic results, but, fortunately, most critical
paths lie in computation logic, which is mainly com-
posed of additions and multiplications—two of the
most frequently used operations. Both the forward
and backward propagations require intensive addi-
tions and multiplications, but most HNNs on ASIC,
FPGA, and embedded GPUs do not support on-chip
learning. Thus, we mainly focus on the timing errors
that occur in addition and multiplication during the
inference phase of HNNs.

Cross-layer vulnerability assessment
The cross-layer vulnerability assessment is com-

prised two phases, as shown in Figure 4: 1) timing
error extraction and 2) timing error injection. The
timing error extraction phase implements the stand-
ard ASIC flow and uses GLSs to generate timing errors
under each operating condition. In the timing error
injection phase, we inject the timing errors into NNs
and then perform inference. We vary the NN genres
and operating conditions to examine the resulted
accuracy. More details about the two phases are
illustrated as follows.

Hardware layer: timing error extraction
We extract the timing errors through the timing

error extraction module, as illustrated in Figure 4,
which is divided into several steps. Note that we
focus on dynamic variation-induced timing errors of
computation units. We extract timing errors from the
adder and the multiplier, which are the two most fre-
quently used computation units in NN computation.
We use floating-point cores [1] to generate the syn-
thesizable VHDL codes of floating-point units. We use
the synopsys design compiler to synthesize the Verilog

codes and use the synopsys IC compiler to generate
the post-place-and-route netlist in TSMC 45 nm tech-
nology. Next, we use Synopsys PrimeTime to perform
static timing analysis, generating standard delay for-
mat (SDF) files under different operating conditions.
To do this, we use the voltage–temperature scaling
features of Synopsys PrimeTime for the composite
current source approach of modeling cell behav-
ior. We consider 20 operating conditions, as shown
in Figure 8, which could introduce both mild and
aggressive timing errors. Then, we use Mentor Graph-
ics ModelSim to do SDF back-annotation GLSs under
nominal frequency to generate output data under dif-
ferent operating conditions. To extract timing errors,
we compare the GLS output y[t] with a pure-RTL simu-
lation result y_ gold[t], which is free from timing errors
because there is no delay annotation. If there is a mis-
match, then we define it as a timing error.

Software layer: timing error injection
We inject the timing errors extracted by the timing

error extraction phase to the NNs by using the sec-
ond phase timing error injection. During the forward
propagation in the NN inference, we inject the errors
into the arithmetic computations (addition and mul-
tiplication) in the Conv layer, FC layer, average pool-
ing layer, batch normalization (BatchNrom) layer
and LBP layer. There are several noteworthy facts
that must be highlighted regarding the error injection
in the software layer. First, the xnor operation and
pop-count accumulation in BCNN and the compari-
son operation in an LBP layer are not implemented
in conventional arithmetic and logic units on CPUs
or processing elements on GPUs. We have to use
multipliers and adders to carry out the 1-bit xnor and
the following accumulation in BCNN. For the com-
parison in an LBP layer, we use the sign bit of sub-
traction to produce the comparison result instead.
Therefore, the TER from adders and multipliers can
affect the outputs of binarized Conv, binarized FC,
and LBP layers.

On a circuit, different input could excite differ-
ent paths, resulting in an input-specific timing error
behavior. To mimic this, an exhaustive look up table
containing the entire input space for each bit position
of each computation unit under all operating condi-
tions needs to be implemented. Then, the computa-
tions need to look up the table to check whether it
has a match on any input operands in the input space.
This makes the inference process prohibitively slow.

Figure 4. Cross-layer assessment flow
with two stages. (a) Hardware layer:
timing error extraction to extract the
timing errors under different operating
conditions. (b) Software layer: timing
error injection into an NN and perform
inference.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on November 28,2024 at 08:30:13 UTC from IEEE Xplore. Restrictions apply.

79September/October 2020

To approximate the situation, we inject the timing
errors as [10]: let both the mul_only and add_only
computation units return a random value each time
they have timing errors. We inject the error into the
computation with the pair of adder TER and multi-
plier TER extracted from the timing error extraction
phase to mimic the time error behavior. For example,
if the adder has a TER at 0.1, we inject errors to 10% of
the total additions. This probability is determined by
operating conditions and computation logic (addition
or multiplication), which can represent the impact of
timing errors on computation logic. We vary the error
injection probability for each operating condition.

Experiments
In this section, we measure timing errors under

20 operating conditions. Then, we measure the HNN
accuracy as a function of varying TERs. Finally, we
characterize the HNN accuracy under dynamic vari-
ations using MLP, CNN, BCNN, and LBPNet.

Experimental setups
In this work, we use tiny-dnn [8], a header-only,

dependency-free deep learning library written in C++,
as our deep learning platform for MLP and CNN. This
platform is light weighted and is designed for deep
learning on the limited computational resource, such
as embedded systems and Internet of Things devices.
For CNN, we use the LeNet-5 like architecture and
replace the LeNet-5’s RBF layer with an FC layer. For
MLP, we use a three-layer MLP with a hidden layer of
60 neurons. We adopt the same structure of BCNN for
Street View House Numbers in the BNN paper and
the LBPNet for MNIST in the LBPNet paper [5]. The
synthesizable C codes for BCNN and LBPNet imple-
mented by us for FPGA accelerators are used for the
error injection. All the four sets of weights and kernels
are pretrained either from the referred tiny-dnn source
or by us on an Nvidia Tesla K40 GPU.

We use MNIST and CIFAR-10 as our data sets to
evaluate the NN accuracy. MNIST of handwritten
numbers is a well-known data set for evaluating the
performance of NN classifiers. The MNIST data set
has a training set and a test set of 60,000 and 10,000
with each having 28 × 28 pixel images. The main fea-
tures of the MNIST data set are strokes and outlines.
Images in CIFAR-10 are daily objects of size 32 × 32,
and the training and test sets include 50,000 and
10,000, respectively. CIFAR-10 is considered to be a
more challenging data set because its information

and features reside in both outlines and textures. We
choose MNIST to conduct a decent evaluation of vul-
nerability as the first step. Then, we deepen and widen
BCNN and LBPNet by adding more layers, kernels,
and random projection maps to conduct the second
step of experiment on CIFAR-10 to understand the vul-
nerability of HNN on general object recognition.

For hardware variations, we vary the voltage from
0.81 to 0.90 V with a step at 0.01 V and the tempera-
ture from 50 °C to 100 °C.

Accuracy under the threat of timing errors
Before the error extraction, we assess the perfor-

mance degeneration as a function of TERs. The accu-
racy is evaluated for both MLP and CNN under the
TER at 0, 0.00001, 0.0001, 0.001, 0.01, 0.1, 0.5, and 0.9
at three configurations as shown in Figures 5 and 6;
add_only means that we only inject timing errors to
adder, mul_only means that we only inject timing
errors to multiplier, and both means that we inject
errors to the adder and the multiplier at the same
time. We observe that for both MLP and CNN, as the
TER increases, the accuracy drops monotonically.
When the TER reaches 0.00001, the HNN can still
deliver a decent accuracy close to original accu-
racy. Once the TER of the adder reaches 0.0001, the
accuracy drops to around 90% and continues drop-
ping to 60% until the TER of the adder the reaches
0.001. In contrast, the multiplier exhibits a much less
significant impact on the HNN accuracy: the HNN
can still deliver 90% accuracy even when the TER
of the multiplier reaches 0.001. In fact, for all exam-
ined TERs, the resultant accuracy of mul_only is
always higher than that of add_only. Moreover, the
accuracy under both configuration is almost iden-
tical to that of add_only configuration, suggesting
that adders-induced errors contribute to most of the
accuracy drop.

One main reason behind the accuracy drop is that
the accumulated convolution sum or the dot-product
sum is fed into a nonlinear activation function,
thereby directly affecting the activation, whereas the
errors from multipliers are averaged and diluted. This
suggests that more hardware design effort should
be made on the adder to ensure its low TER. On the
other hand, the worst accuracy of both NN genres
is around 10%, when either add_only or mul_only
reaches 0.1. We can observe that such an accuracy
drop starts saturating at 0.1 TER, almost identical to a
random guess of the ten-class recognition task.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on November 28,2024 at 08:30:13 UTC from IEEE Xplore. Restrictions apply.

80 IEEE Design&Test

General Interest

Another important observation is that the accuracy
of CNN decreases more drastically than that of MLP,
which conflicts our intuition of the higher capability
of CNN. The classification accuracy at the adder-only
0.001 TER is 61%, which is higher than CNN’s 40%
accuracy at the 0.001 TER. However, when we inspect
in detail, the fan-in of a neuron and a convolutional
kernel reveals the surprising observation. The fan-in of
a convolutional kernel is defined by the spatial size of
a filter, which is 3 × 3 and relatively small compared to
a neuron’s fan-in of MLP. Therefore, the injected error
in MLP gets diluted better.

In summary, such observations show that even
though NNs have inherent error resilience, the tim-
ing errors can still significantly affect the NN accu-
racy and motivate this work.

Vulnerability of the MNIST
We use the real dynamic operating conditions to

obtain realistic TERs, thereby characterizing the vul-
nerability of HNNs to dynamic variations. Notably,
we use the timing error extraction phase described in
the “Hardware layer: timing error extraction” section
to characterize the timing error behavior of a 32-bit
floating-point adder and a multiplier under different
operating conditions, as shown in Figure 7. Besides the
ideal condition without any error, the selected operat-
ing conditions cover a wide range of TERs: at the best
condition (0.90 V and 50 °C) with TERs less than 0.0001;
under the worst condition (0.81 V and 50 °C), the 0.5
and 1.0 TERs are found in adders and multipliers,
respectively. By comparing these two computing units,
we find that the TER of the multiplier is always higher

than that of the adder under the same condition. This
is because the multiplier design has more critical paths
than the adder, resulting in more timing violations. The
TER of the adder reaches 1% when the operating con-
dition is around 0.86 V. As shown in Figures 5 and 6,
the accuracy drop starts to saturate when the TER of
the adder reaches 0.01; thus we expect to see the worst
accuracy starting at around 0.86 V.

We then present the accuracy of MLP, CNN,
BCNN, and LBPNet under the 20 operating condi-
tions, as shown in Figure 8, where we observe sev-
eral important facts as follows.

First, the lowest accuracy under the worst-case
operating conditions is around 10% for all the four
networks across multiple conditions from (0.85 V
and 100 °C) to (0.81 V and 100 °C). For MLP, CNN,
and BCNN, this observation is expected as we can
see from Figures 5 and 6 where the accuracy drops
to 10% when the TER of either unit reaches 0.01.

Second, the four curves can be categorized into
two groups because MLP, CNN, and BCNN behave
similarly, and the LBPNet’s accuracy curve demon-
strates a high immunity to the TER residing in adders
and multipliers.

Third, Figure 8 shows that under the condition
between (0.90 V and 50 °C) and (0.86 V and 50 °C),
where the TER of the adder is less than 0.01, the accu-
racy drop of MLP to its original accuracy is less than
that of CNN, indicating that MLP might be more resil-
ient than CNN within a certain TER. Part of the reason
for this is that given the same TER, the amount of errors
in CNN is larger than MLP because CNN has more arith-
metic operations, and the percentile of multiplications
among all arithmetic computations is higher in CNN.

Figure 5. MLP accuracy as a function
of TER.

Figure 6. CNN accuracy as a function
of TER.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on November 28,2024 at 08:30:13 UTC from IEEE Xplore. Restrictions apply.

81September/October 2020

Fourth, BCNN sustains slightly more timing errors
than MLP and CNN. Compared with MLP’s curve,
BNN’s vulnerability is enhanced twice since the clas-
sification drops to the same with MLP when the TER
is doubled.

Fifth, LBPNet keeps immune against the varia-
tion until we impose much harsher conditions. A
10% accuracy deterioration is observed at 0.86 V
and 50 °C, whereas all the other three models signif-
icantly lose classification ability and fall around 10%
accuracy. LBPNet totally fails to classify upon 0.85
V and 100 °C, as the TERs climb to 0.1 and 0.5 for
adders and multipliers, respectively.

Sixth, last but not least, we find that both the
voltage and temperature play an important role
in determining the inference accuracy. Fixing the
temperature at 100 °C and reducing the voltage by
0.01 V from 0.89 to 0.88 V results in an accuracy
drop of the CNN model from 85.15% to 48.64%;
fixing the voltage at 0.88 V and increasing the tem-
perature by 50 °C results in an accuracy drop from
70.34% to 48.64%. By comparing the accuracy at
0.90 V and 50 °C and 0.86 V and 50 °C, we find
the accuracy drops to the worst case at around
10% from the best case at around 98% by a voltage
reduction of 0.04 V.

Vulnerability of CIFAR-10
Figure 9 shows the result of CIFAR-10. In the sec-

ond step, besides deepening and widening BCNN
and LBPNet, we reduced the size of MLP classifiers

to two layers of 512 and 10 neurons. Only one
BatchNrom layer is preserved so that the training
process is accelerated and the vulnerability of the
binarized Conv layers and LBP layers can be more
prominent. The structure of BCNN is the same as
the structure of the original BNN paper except for
the simplified FC classifier. We stack the LBPNet
to 10 layers and utilized an ensemble of 15 sets of
random projection maps to achieve a competent
accuracy with BCNN.

The initial accuracy of BCNN and LBPNet is
around 81%. As the hardware variation increases,

Figure 7. TER of adder and multiplier under different
operating conditions.

Figure 8. HNN accuracy as a function of dynamic variations on MNIST.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on November 28,2024 at 08:30:13 UTC from IEEE Xplore. Restrictions apply.

82 IEEE Design&Test

General Interest

BCNN’s classification ability start to degrade after
0.89 V and 50 °C, which is not far from the result of
the first experiment. However, the immunity of the
deeper and wider LBPNet becomes less robust since
LBPNet’s accuracy starts to fall off of the cliff at 0.88
V and 50 °C. In other words, if Figures 8 and 9 are
overlapped, we can see that the curves of BCNN and
LBPNet recede into the left, and the extent of deg-
radation for LBPNet is more obvious. There is, how-
ever, still a gap between the two curves. Although
the gap is reduced, the depth of BCNN remains the
same. The classifier in a deeper network would col-
lect more errors than that in a shallow network.

Discussion on the BNN and the LBPNet
The binarized values and operations in BCNN

rectify a portion of the injected errors, thereby
enhancing the robustness. Specifically, the 1-bit mul-
tiplication and 1-bit accumulation again dilute the
impact of the injected errors. Moreover, when the
binary activation function converts the erroneous
inner product sum or convolution sum, only the sign
inversion changes the activation output. That is, the
total of injected errors collected by the activation
function must be strong enough to invert the sign;
otherwise, the activation output remains the same
without the error injection.

The immunity of LBPNet outperforms the other
models with a remarkable gap. There are multiple
causes that contribute to this immunity, which can

be qualitatively justified by revisiting the details of
an LBP Layer. The comparison is simulated with
the sign bit from the adder’s subtraction output.
Then, the sign bits corresponding to an LBP ker-
nel are produced by adders in parallel and form
a bit sequence to represent an integer on the out-
put feature map. Whenever the adder is stochasti-
cally selected for an error injection, the sign bit is
flipped randomly according to a uniform distribu-
tion. Therefore, an injected error can only affect
a single bit rather than an output value as in MLP
and CNN. Furthermore, if the selected bit is not the
most significant bit of the output value, the effect of
error injection is negligible. On the other hand, the
sign bits are combined with a bit shift and a logic
OR operations in parallel, which are relatively less
affected by the hardware variations given their cir-
cuitry simplicity and are not within the scope of this
work. The absence of accumulation helps LBPNet
to preclude the error accumulation and hinders the
propagation of errors.

Related work
Various works study the vulnerability of HNNs

under logic errors induced by inexact design [2],
[7], [12]. Du et al. [2] substituted the regular multi-
pliers with inexact multipliers that provide the inex-
act logic but with less hardware cost. Mrazek et al.
[7] further optimized such design with a uniform
structure suitable for hardware implementation.

Figure 9. HNN accuracy as a function of dynamic variations on CIFAR-10.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on November 28,2024 at 08:30:13 UTC from IEEE Xplore. Restrictions apply.

83September/October 2020

Zhang et al. [12] provided a framework for hard-
ware NN designers to choose which parts were suit-
able for an approximation that led to less impact
on accuracy based on a criticality ranking. These
works intentionally designed inexact hardware
and introduced logic errors in exchange for less
hardware cost.

Compared to logic errors, timing errors were less
exploited in neural networks because of its unpre-
dictability and uncertainty [4]. Logic errors could
be determined once the design is fixed, but timing
errors can only be obtained through simulations.
A retraining-based method has been proposed to
mitigate the timing errors in hardware neural net-
works [11]. However, these works assumed a fixed
timing variation for each gate without considering
hardware variations as the root cause, which might
be unrealistic.

In summary, there have been no prior works
assessing the NN vulnerability to dynamic oper-
ating condition variations. In this work, we do not
introduce the errors intentionally but focus on the
unintentional timing errors caused by hardware
variations. We link the timing errors with low-level
hardware variations and characterize them under
different operating conditions and present the
importance of considering variations when design-
ing hardware NNs.

Threats to validity: We mainly focus on vari-
ation-induced timing errors in computation logic.
However, the timing errors could also occur in
control logic, which might lead to more severe
accuracy drop or malfunction. Fortunately, it was
observed that control logic only contributes a small
set of critical paths [11], making it less vulnerable to
timing errors.

Promising Solutions: The observations and discus-
sions in the previous sections have enlightened us
about several directions to strengthen the immunity
of the voltage and temperature variations.

• 	 Considering the experiments on MLP and CNN, we
can increase the fan-in of each accumulation to
dilute the impact of hardware variations. However,
this trend conflicts with pruning, which is a prevail-
ing model reduction method. People need to be
aware of the fact that the side effects of pruning
include the degradation of network vulnerability.

• 	 Binarizing the network also dilutes the tim-
ing error’s impact, and it works for both MLP

and BCNN. More generally, the quantization of
a network not only makes the network hard-
ware-friendly but also increases its vulnerability.

• 	 Although deepening a network structure can
usually increase classification accuracy, we need
to keep in mind that the increase of depth will
reduce the immunity to hardware variations.

• 	 Another method is to adopt LBPNet because the
lack of floating number MAC operations and the
high parallelism in the LBP operations have demon-
strated that both the error injection and propaga-
tion in LBPNets can be limited effectively.

Future work: In this work, we focus on assessing
the effects of hardware variations on NN perfor-
mance. The next question is: How can we mitigate
such timing errors? For future work, we focus on
integrating the timing errors as a vector for back-
ward propagation to enable an adaptive training
method. Moreover, we plan to design a reconfigur-
able architecture that can automatically select suita-
ble weights for a given voltage and temperature from
a set of prestored weights.� 

 References
	 [1]	 F. de Dinechin and B. Pasca, “Designing custom

arithmetic data paths with FloPoCo,” IEEE Design Test.

Comput., vol. 28, no. 4, pp. 18–27, Jul. 2011.

	 [2]	 Z. Du et al., “Leveraging the error resilience of

neural networks for designing highly energy efficient

accelerators,” IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 34, no. 8, pp. 1223–1235, Aug. 2015.

	 [3]	 I. Hubara et al., “Binarized neural networks,” in Proc.

Adv. Neural Inf. Process. Syst., 2016, pp. 4107–4115.

	 [4]	 X. Jiao et al., “SLoT: A supervised learning model

to predict dynamic timing errors of functional units,”

in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),

Mar. 2017, pp. 1183–1188.

	 [5]	 J.-H. Lin et al., “Local binary pattern networks,” in

Proc. IEEE Winter Conf. Appl. Comput. Vis. (WACV),

Mar. 2020, pp. 825–834.

	 [6]	 J.-H. Lin et al., “Accelerating local binary pattern

networks with software-programmable FPGAs,” in

Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),

Mar. 2019, pp. 1112–1117.

	 [7]	 V. Mrazek et al., “Design of power-efficient approximate

multipliers for approximate artificial neural networks,”

in Proc. 35th Int. Conf. Comput.-Aided Design

(ICCAD), 2016, p. 7.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on November 28,2024 at 08:30:13 UTC from IEEE Xplore. Restrictions apply.

84 IEEE Design&Test

General Interest

	 [8]	 T. Nomi. (2016). Tiny-DNN. Accessed: Apr. 10, 2017.

[Online]. Available: https://github.com/nyanp/tiny-cnn

	 [9]	 T. Ojala, M. Pietikäinen, and D. Harwood, “A

comparative study of texture measures with

classification based on featured distributions,” Pattern

Recognit., vol. 29, no. 1, pp. 51–59, Jan. 1996.

	[10]	 A. Sampson et al., “EnerJ: Approximate data types

for safe and general low-power computation,” ACM

SIGPLAN Notices, vol. 46, no. 6, p. 164, Jun. 2011.

	[11]	 Y. Wang et al., “Resilience-aware frequency tuning for

neural-network-based approximate computing chips,”

IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,

vol. 25, no. 10, pp. 2736–2748, Oct. 2017.

	[12]	 Q. Zhang et al., “ApproxANN: An approximate

computing framework for artificial neural network,”

in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),

2015, pp. 701–706.

Jeng-Hau Lin is a Research Engineer at Qualcomm
Inc. He nurtures a keen interest in computer
architecture on mobile devices for the deep learning
algorithm.

Xun Jiao is an Assistant Professor with Villanova
University, Villanova, PA. His research interests
include edge computing, machine learning, and
embedded systems. He is an Associate Editor for the
IEEE Transactions on Computer-Aided Design.

Mulong Luo is currently pursuing a PhD with the
School of Electrical and Computer Engineering,
Cornell University, Ithaca, NY. His research interests
include computer architecture and cyber–physical
system security.

Zhuowen Tu is a Professor of Cognitive Science,
University of California, San Diego, La Jolla, CA. His
main research interests include computer vision,
machine learning, and neural computation. Tu has a
PhD in computer science from Ohio State University,
Columbus, OH. He is a Fellow of the IEEE.

Rajesh K. Gupta is a Professor in the Department
of Computer Science and Engineering and the
Founding Director of Halıcıoğlu Data Science
Institute at the University of California, San Diego, La
Jolla, CA. He leads the Microelectronic Embedded
Systems Lab, whose research interests span topics
that have recently come to be characterized under
embedded, cyber–physical systems and more
recently under Internet-of-Things. He is a Fellow of
IEEE, ACM, and AAAS.

 Direct questions and comments about this article
to Jeng-Hau Lin, Computer Science and Engineering
Department, University of California San Diego, La
Jolla, CA 92093-0021 USA; jel252@ucsd.edu.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on November 28,2024 at 08:30:13 UTC from IEEE Xplore. Restrictions apply.

https://www.sciencedirect.com/science/article/abs/pii/0031320395000674#!

