
An Assessment of Vulnerability of Hardware Neural

Networks to Dynamic Voltage and Temperature

Variations

Xun Jiao‡, Mulong Luo§, Jeng-Hau Lin‡, and Rajesh K. Gupta‡

‡Department of Computer Science and Engineering, UC San Diego, CA, USA
§Department of Electrical and Computer Engineering, Cornell University, NY, USA

{xujiao,jel252,gupta}@cs.ucsd.edu, ml2558@cornell.edu

Abstract—As a problem solving method, neural networks have
shown broad applicability from medical applications, speech
recognition, and natural language processing. This success has
even led to implementation of neural network algorithms into
hardware. In this paper, we explore two questions: (a) to what
extent microelectronic variations affects the quality of results by
neural networks; and (b) if the answer to first question represents
an opportunity to optimize the implementation of neural network
algorithms. Regarding first question, variations are now increas-
ingly common in aggressive process nodes and typically manifest
as an increased frequency of timing errors. Combating variations
– due to process and/or operating conditions – usually results in
increased guardbands in circuit and architectural design, thus
reducing the gains from process technology advances. Given
the inherent resilience of neural networks due to adaptation
of their learning parameters, one would expect the quality of
results produced by neural networks to be relatively insensitive
to the rising timing error rates caused by increased variations. On
the contrary, using two frequently used neural networks (MLP
and CNN), our results show that variations can significantly
affect the inference accuracy. This paper outlines our assessment
methodology and use of a cross-layer evaluation approach that
extracts hardware-level errors from twenty different operating
conditions and then inject such errors back to the software layer
in an attempt to answer the second question posed above.

I. INTRODUCTION

Neural network algorithms have found use in a wide range

of applications such as medical diagnostics [26], image clas-

sification [19], speech recognition [12], and natural language

processing [6]. This versatility has led to their implementation

on a variety of hardware platforms: GPU [5], FPGA [11], and

ASIC [4].

With the continuous scaling of CMOS technology, the

underlying transistors in all these implementations are in-

creasingly susceptible to variations in manufacturing and

operating conditions. Dynamic variations in microelectronic

systems, which is the main focus of this paper, are caused

by environmental factors such as supply voltage droops and

temperature fluctuations. Voltage droops are caused in re-

sponse to instantaneous current fluctuations due to activities

on the power delivery network. Temperature fluctuation could

alter the circuit parameters such as carrier mobility, threshold

voltage, etc. Such variations can manifest themselves as timing

errors, leading to incorrect computation results and system fail-

ures. Such variations have led to increasing use of overdesign

and guardbands in circuit and architectural design to ensure

reliability, which reduce the gains from process technology

advances.

Due to the ability to adapt their learning parameters, neural

networks have an inherent resilience to errors. Thus, one

would expect that the quality of results produced by hardware

neural networks (HNNs) to be relatively insensitive to the

rising timing error rates caused by increased variation, thus

opening doors for opportunistic reduction of guardbands to

increase the operational efficiency of hardware. There is a

need for a quantitative assessment here to explore the extent to

which guardbands can be reduced in HNNs. In this paper, we

investigate this question as to whether and how much accuracy

of HNNs could be affected by dynamic variations. To do this,

we capture and represent variations from low-level hardware,

and then expose them to neural networks inferences. Unlike

logic errors which can be derived though a mathematical

formulation[8][22][28], variation-induced timing errors can

only be obtained using gate-level simulation, making the error

injection implementation time-consuming and not scalable.

Approach and Contributions: In this paper, we propose a

cross-layer approach to assess the vulnerability of HNNs to

dynamic voltage and temperature variations, in which we

extract the timing errors from hardware layer using gate-

level simulations and examine their effects in the software

layer using error injections. To evaluate the soundness of

this approach, we measure the timing errors using gate-level

simulations (GLS) of a post-layout circuits in TSMC 45nm

technology. We vary the voltage and temperature in a wide

range to examine the effects of variations. Then, we represent

and inject these timing errors to neural networks during

their inference. Finally, we examine the resilience of two

neural networks, MLP and CNN, by testing them on MNIST

dataset[21].

Based on our implementation and evaluation, this paper

makes the following contributions:

• We extract the circuit level timing errors caused by

voltage and temperature variations from twenty different
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Fig. 1. An example of 4-layer multi-layer perceptron neural network.

Fig. 2. The processes among a convolutional layer.

operating conditions using gate-level simulations.

• We inject such timing errors back into neural network

inference and evaluate the accuracy on MNIST dataset at

different conditions.

• Using two frequently used neural networks (MLP and

CNN), our results show that variations can significantly

affect the inference accuracy.

II. HARDWARE NEURAL NETWORKS

Modeled for neural processing, Figure 1 shows a typical

neural network, a multi-layer perceptron (MLP) consisting of

an input layer, hidden layers, and an output layer. Except the

input layer, all remaining layers are composed with artificial

neurons that represent the basic computation unit. An artificial

neuron consists of a linear processing part followed by a

non-linear processing part. The linear part collects the output

information, namely the activations, from previous layer. The

collection method is a dot production between weights and

activations. The nonlinear part includes regularization like

dropout, and activation functions such as logistic sigmoid,

hyperbolic tangent, or rectilinear unit. The nonlinear activation

function enables a neural network to be a universal function

approximator [10]. Rumelhart et. al. [23] intelligently applies

the chain rule of calculus and gradient descent on neural

networks to train the weights and hence minimizes the classi-

fication errors.

Since proposed in 1989, convolutional neural networks

(CNNs) [20] have pushed the performance of neural networks

to a new realm. Fig. 2 depicts the internal processes in a

convolutional layer with 9 kernels, each of which consists of

three filters. The convolution operation models the hardwired

bonding between the neurons on adjacent layers. It uses a

sliding filter to perform dot-products of the filter and uses

a portion of the input image to generate an output image,

namely the feature map. Since the convolution operations are

differentiable, the filters can be trained to capture the features

of the input images with backward propagation [23]. Pooling

is used to reduce the size of a feature map by selecting the

maximum pixel strength or averaging several pixel strengths.

It benefits the transformation invariance because it drops un-

necessary minor information and preserves the most dominant

features for the overall classification task.

The robustness of a neural network comes from many

aspects. From a higher level point of view, the training

process of a neural network model is simply an ensemble of

multiple linear or logistic regressions working in parallel. The

regression itself ignores minor noises of the data and yields

a model for the most likely distribution of the given data.

The regularization process inside a neural network also con-

tributes to robustness because no matter how deterministically

penalties on weights are added or how stochastically certain

partials of the model are dropped, the weights are trained to

accommodate the majority of the data with a simplest probable

distribution.

Hardware variations could impact HNNs through timing er-

rors in both computation logic and control logic. The errors in

control logic could lead to catastrophic results but fortunately,

most critical paths lie in computation logic, which is mainly

composed of additions and multiplications, two of the most

frequently used operations. Both the forward and backward

propagation require intensive additions and multiplications.

Thus, in this paper, we mainly focus on the timing errors that

occur in addition and multiplication.

III. CROSS-LAYER VULNERABILITY ASSESSMENT

The cross-layer vulnerability assessment is comprised of

two phases as shown in Fig. 3: Timing Error Extraction

and Timing Error Injection. a) The Timing Error Extraction

phase implements the standard ASIC flow and uses gate-level

simulation (GLS) to generate timing errors at each operating

condition. b) In the Timing Error Injection phase, we inject the

timing errors into neural networks and then perform inference.

We vary the neural network genres and operating conditions

to examine the resulted accuracy. More details about the two

phases are illustrated as follows.

A. HW-layer: Timing Error Extraction

We extract the timing errors through Timing Error Ex-

traction module as illustrated in Fig. 3, which is divided

into several steps. Note that we focus on dynamic variation-

induced timing errors of computation units. We extract timing

errors from the adder and the multiplier, which are the two

most frequently used computation units in neural networks

computation. We use FloPoCo [7] to generate the synthesiz-

able VHDL codes of floating point units. We use Synopsys

Design Compiler to synthesize the Verilog codes and use

946



RTL 
Description Synthesis Place & Route STA Gate-level 

Netlist + SDF
Gate-level 
Simulation

TSMC 
45nm

Voltage
Temp

Variable 
Parameters

Input

Variable 
Parameters

Timing ErrorsError Injection Neural 
Networks

Prediction 
Accuracy

HW-layer: Timing Error Extraction

SW-layer: Timing Error Injection

Inference

Fig. 3. Cross-layer assessment flow with two stages: a) HW-layer: Timing Error Extraction to extract the timing errors under different operating conditions;

b) SW-layer: Timing Error injection into neural network and perform inference.

Synopsys IC Compiler to generate post place-and-route netlist

in TSMC 45nm technology. Next, we use Synopsys PrimeTime

to perform static timing analysis, generating Standard Delay

Format (SDF) files at different operating conditions. To do

this, we use the voltage temperature scaling features of Syn-

opsys PrimeTime for the composite current source approach

of modeling cell behavior. We consider twenty operating

conditions as shown in Fig. 7, which could introduce both mild

and aggressive timing errors. Then, we use Mentor Graphics

ModelSim to do SDF back-annotation gate-level simulations

under nominal frequency to generate output data at different

operating conditions. To extract timing errors, we compare the

GLS output y[t] with a pure-RTL simulation result y gold[t],
which is free from timing errors because there is no delay

annotation. If there is a mismatch, then we define it as a timing

error.

B. SW-layer: Timing Error Injection

We inject the timing errors extracted by the Timing Error

Extraction phase to the neural networks by using second

phase Timing Error Injection. During the forward propagation

in the neural network inference, we inject the errors into

the computations (addition and multiplication). For a circuit,

different input could excite different paths, resulting in an

input-specific timing error behavior. To mimic this, an ex-

haustive look-up table containing the entire input space for

each bit position of each computation unit under all operating

conditions needs to be implemented. Then, the computations

need to look up the table to check whether it has a match on

any input operands in the input space. This makes the inference

process prohibitively slow. To approximate the situation, we

inject the timing errors as [24]: let the computation units

return a random value each time they have timing errors. We

inject the error into the computation with a TER extracted

from the Timing Error Extraction phase to mimic the time

error behavior. For example, if adder has a TER at 10%, we

inject errors to 10% of the total additions. This probability

is determined by operating conditions and computation logic

(addition or multiplication), which can represent the impact of

timing errors on computation logic. We vary the error injection

probability for each operating condition.

IV. EXPERIMENTAL RESULTS

In this section, we measure timing errors under twenty

operating conditions. Then, we measure HNNs accuracy as a

function of varying timing error rates. Finally, we characterize

the HNNs accuracy under dynamic variations using MLP and

CNN.

A. Experimental Setups

In this work, we use tiny-dnn [1], a header only, dependency

free deep learning library written in C++, as our deep learning

platform. This platform is light weighted, and is designed

for deep learning on limited computational resource, such as

embedded systems and IoT devices. For CNN, we use LeNet-

5 like architecture and replace LeNet-5’s RBF layer with

normal fully-connected layer. For MLP, we use 3-layer MLP

with a hidden layer of 60 neurons. We use MNIST (Mixed

National Institute of Standards and Technology) database of

handwritten numbers [21] as our dataset to evaluate the neural

network accuracy. This dataset is a well-known dataset for

evaluating the performance of neural network classifiers. The

dataset is split into training set and test set with 60,000 and

10,000 28 × 28 images. We vary the voltage from 0.81V to

0.90V with a step at 0.01V and the temperature from 50◦C to

100◦C.

B. Accuracy under Timing Errors

We assess the accuracy for both MLP and CNN under the

TER at 0, 0.00001, 0.0001, 0.001, 0.01, 0.1, 0.5, and 0.9 at

three configurations as shown in Fig. 4 and Fig. 5; add only

means we only inject timing errors to adder, mul only means
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Fig. 4. MLP accuracy as a function of TER.

we only inject timing errors to multiplier and both means we

inject errors to adder and multiplier at the same time. We

observe that for both MLP and CNN, as the TER increases,

the accuracy drops monotonically. When the TER is 0.00001,

the HNN can still deliver a decent accuracy close to original

accuracy. Once the TER of adder reaches 0.0001, the accuracy

drops to around 90% and continue dropping to 60% when the

TER of adder reaches 0.001. In contrast, the multiplier exhibits

much less significant impact on HNN accuracy: the HNN can

still deliver 90% accuracy even when the TER of multiplier

reaches 0.001. In fact, for all examined TERs, the mul only

resulted accuracy is always higher than that of add only.

Moreover, the accuracy under both configuration is almost

identical to that of add only configuration, suggesting that

adders-induced errors contribute to most of the accuracy drop.

One main reason for this is that the accumulated convolution

sum or dot-product sum are fed into a nonlinear activation

function. The errors from multipliers will be averaged, but the

errors from adders directly impact the input of the activation

function. This suggests that more hardware design effort

should be made on the adder to ensure its low TER. On the

other hand, the worst accuracy of both NN genres is around

10%, when either add only or mul only is 0.1. We can observe

that such an accuracy drop starts saturating at 0.1 TER, almost

identical to a random guess, and stays almost the same when

TER continues increasing. In summary, such observations

show that even though neural networks have inherent error

resilience, the timing errors still can significantly affect neural

network accuracy and motivate this work.

C. Accuracy Versus Dynamic Variations

We then use the real dynamic operating conditions to

obtain realistic timing error rates and thereby characterize the

vulnerability of HNNs to dynamic variations.

First, we use the Timing Error Extraction described in

Section III-A to characterize the timing error behavior of 32-

bit floating point adder and multiplier under different operating
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Fig. 5. CNN accuracy as a function of TER.
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Fig. 6. TER of adder and multiplier under different operating conditions.

conditions as shown in Fig. 6. The selected operating condi-

tions cover a wide range of TERs: at the best condition (0.90V,

50◦C), no timing errors are injected for both computations;

at the worst condition (0.81V, 50◦C), 50% and 100% TER

are found in adders and multipliers respectively. The TER of

adder reaches 0.01 when the operating condition is around

0.86V. Based on Fig. 4 and Fig. 5, the accuracy drop starts to

saturate when the TER of adder reaches 0.01, thus we expect

to see a worst accuracy starting at around 0.86V.

We then present the accuracy of both MLP and CNN under

twenty operating conditions, as shown in Fig. 7 and Table. I,

where we observe several important facts. First, the lowest

accuracy under worst-case operating conditions is around 10%.

By looking into the prediction results, we found CNN is able

to identify more than 90% of the 0 digits even under worst

condition. Second, the 10% accuracy has been observed across

multiple conditions from (0.86V, 50◦C) to (0.81V, 100◦C).

(For better space utilization, we do not present the accuracy
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TABLE I

HNN ACCURACY UNDER DYNAMIC VARIATIONS.

HNN (0.90V, 50◦C) (0.90V, 100◦C) (0.89V, 50◦C) (0.89V, 100◦C) (0.88V, 50◦C) (0.88V, 100◦C)

MLP 96.79% 96.03% 94.90% 87.93% 75.56% 57.76%

CNN 98.37% 97.31% 95.87% 85.15% 70.34% 48.64%

HNN (0.87V, 50◦C) (0.87V, 100◦C) (0.86V, 50◦C) (0.86V, 100◦C) (0.85V, 50◦C) (0.86V, 100◦C)

MLP 25.67% 15.89% 10.45% 10.33% 9.42% 9.91%

CNN 18.85% 11.13% 9.81% 9.80% 9.81% 9.81%

HNN (0.85V, 50◦C) (0.85V, 100◦C) (0.84V, 50◦C) (0.84V, 100◦C) (0.83V, 50◦C) (0.83V, 100◦C)

MLP 9.89% 9.80% 9.72% 9.60% 10.15% 9.60%

CNN 9.75% 9.81% 9.89% 9.80% 9.91% 9.84%

under 0.81V and 0.82V in Table. I, where the accuracy of both

is around 10%.) This is expected as we can see from Fig. 4

and Fig. 5 where the accuracy drops to 10% when the TER

of either unit reaches 0.1. Third, Table. I shows that under the

condition between (0.86V, 50◦C) and (0.90V, 100◦C), where

the TER of adder is less than 0.01, the accuracy drop of MLP

to its original accuracy is less than that of CNN, indicating

MLP might be more resilient than CNN within a certain TER.

Part of the reason for this is that given the same TER, the

amount of errors in CNN is larger than MLP because CNN

has more arithmetic operations. Last but not least, we find

the voltage and temperature both play an important role in

determining the inference accuracy. By fixing the temperature

at 100◦C, reducing the voltage by 0.01V from 0.89V to 0.88V

results an accuracy drop from 85.15% to 48.64%; by fixing the

voltage as 0.88V, increasing the temperature by 50◦C results

an accuracy drop from 70.34% to 48.64%. By comparing the

accuracy at (0.90V, 50◦C) and (0.86V, 50◦C), we find the

accuracy drops to worst case at around 10% from best case

at around 98% by a voltage reduction of 0.04V. In summary,

such observations indicate there is a huge impact of dynamic

variations on hardware neural networks accuracy and motivate

the necessity of protecting HNN against variations.
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Fig. 7. HNN accuracy as a function of dynamic variations.

V. DISCUSSION

Threats to Validity: In this work, we mainly focus on

variation-induced timing errors in computation logic. However,

the timing errors could also occur in control logic, which might

lead to more severe accuracy drop or malfunction. Fortunately,

it was observed that control logic only contributes a small set

of critical paths [25], making it less vulnerable to timing errors.

Future Work: In this work, we focus on assessing the effects

of hardware variations on neural network performance. The

next question is how we can mitigate such timing errors.

For the future work, we focus on integrating the timing

errors as a vector for backpropagation to enable an adaptive

training method. Moreover, we plan to design a reconfigurable

architecture that can automatically select suitable weights for a

given voltage and temperature from a set of pre-stored weights.

VI. RELATED WORK

We describe the related work in three parts: combating tim-

ing errors, neural network resiliency and the main difference

of our work with them.

Various hardware techniques have been developed to combat

timing errors. Razor [9], uses a shadow flip-flop to detect

timing errors and use recovery circuits to correct them. Error-

detection sequential circuits (EDS) [2], double sample and

compare signal arriving at different timing through such flip-

flops and then correct them. Several learning methods are used

to predict timing errors for functional units or instructions to

enable an adaptive design [16][17][18]. A multi-armed bandit

based optimization method was proposed to enable dynamic

timing speculation [27]. Going up to the system level, bayesian

networks have been used to calculate the system reliability

with both hardware and software in consideration, and acquire

higher accuracy [13][14].

More recent approaches to improving cost and energy

efficiency have advocated tolerance to (and even use of)

computational approximations, such as approximate adders

[3][15]. These errors, originating from inexact logic design of

computing unit, have been used in hardware neural networks to

improve operational efficiency [8][22][28]. Du et. al. substitute

the normal multipliers with inexact multipliers that provide

inexact logic but with less hardware cost [8]. Mrazek et.

al. further optimize such design with a uniform structure

suitable for hardware implementation [22]. Xu et. al. provides
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a framework for hardware neural network designers to choose

which parts are suitable for approximation that leads to less

impact on accuracy based on a criticality ranking [28]. These

works intentionally design inexact hardware and introduce

logic errors in exchange for less hardware cost.

Compared to logic errors, timing errors are less exploited in

neural networks because of its unpredictability and uncertainty.

Logic errors could be determined once the design is fixed

but timing errors can only be obtained through simulations.

A retraining-based method has been proposed to mitigate the

timing errors in hardware neural networks [25]. However,

these works assume a fixed timing variation for each gate

without considering hardware variations as the root cause,

which might be unrealistic.

In summary, there have been no prior works assessing

the neural network vulnerability to dynamic variations. In

this work, we do not introduce the errors intentionally but

focus on the unintentional timing errors caused caused by

hardware variations. We link the timing errors with low-

level hardware variations and characterize them under different

operating conditions and present the importance of considering

variations when designing hardware neural networks.

VII. CONCLUSIONS

In this paper, we assess the effects of dynamic voltage and

temperature variations on the performance of hardware neural

networks. We first extract the timing errors of post place-

and-route computation units under twenty operating conditions

through gate-level simulations. We then inject such errors to

neural network inference phase and evaluate the resulted ac-

curacy. Using two frequently used neural networks, MLP and

CNN, we demonstrate that dynamic voltage and temperature

variations can cause significant drop in inference accuracy.

REFERENCES

[1] tiny-dnn: header only, dependency-free deep learning framework in

c++11.

[2] Keith Bowman et al. Energy-efficient and metastability-immune resilient

circuits for dynamic variation tolerance. JSSC, 2009.

[3] Vincent Camus, Jeremy Schlachter, and Christian Enz. A low-power

carry cut-back approximate adder with fixed-point implementation and

floating-point precision. In Proceedings of the 53rd Annual Design

Automation Conference, page 127. ACM, 2016.

[4] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji

Chen, and Olivier Temam. Diannao: A small-footprint high-throughput

accelerator for ubiquitous machine-learning. In ACM Sigplan Notices,

volume 49, pages 269–284. ACM, 2014.

[5] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang,

Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun, et al. Dadiannao: A

machine-learning supercomputer. In Proceedings of the 47th Annual

IEEE/ACM International Symposium on Microarchitecture, pages 609–

622. IEEE Computer Society, 2014.

[6] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray
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