
Reinforcement Learning for Automated

Exploration and Detection of Cache-Timing

Attacks in CPS Hardware

Mulong Luo

PhD candidate, Cornell University

Incoming postdoctoral researcher, UT Austin

July 9th, DACPS workshop, 2023

Cornell University

2

• CPS contains HW Parts

– E.g., Micro-controller, micro-processor, DRAM

• HW vulnerabilities affect CPS

– Cache side channels

– Fault injection attacks

– Row-hammer attacks

• CPS safety and privacy may be violated

due to HW security issues

– Side channel for tracking autonomous vehicles

– Interrupt injection for manipulating robotic

vehicles

HW Affects CPS Security

Meltdown/Spectre

Hospital

Airport

Restaurant

Attack

software

Cache
Computer

Home

Victim

software
GPS

Denied!

Tracking autonomous vehicle

with cache timing channel
[Luo, USENIX 2020]

Cornell University

3

• System is too complex

– laptop processors have ~ 20,000,000,000 transistors

• Undefined system behavior

– timing of a memory read is unspecified

– speculative execution that are not committed

• Humans are slow and make mistakes

– can we use machine intelligence to replace them?

Finding HW Vulnerabilities is Hard

A microprocessor

Meltdown/Spectre

Cornell University

4

• Reinforcement learning (RL) can explore

cache-timing attacks in processors

automatically

– without explicit specification of processors

– without knowing existing attack sequences

• RL finds attacks

– on diverse configurations of caches

– on real hardware

– discovers new attack patterns

Executive Summary
Agent

Environment

Reinforcement learning scheme

Attack a processor

Cornell University

5

• Mechanism

– sharing of caches by different processes

– infer secret by observing cache timing

• Advantages

– attacker is just a program, no physical access

– does not violate any OS-level access control

• Leak important assets

– cryptographic keys

– VM/browser isolation

– building blocks for Spectre/Meltdown

Cache-Timing Attack: Powerful and Stealthy

Victim VM Attacker VM

Core
L1

Core
L1

Core
L1

Core
L1

Shared LLC

VM Isolation

P2

P1

Processor Memory

Cache

Process 2

Process 1

h = array[secret*4096];

Cornell University

6

• Cache-timing attack is still developing

– Traditional: prime+probe, flush+reload, evict+reload, etc

• Finding cache-timing attack is challenging

– replacement policy complications

– unknown microarchitectural states

– …

Why Finding new Cache-Timing Attack is Hard?

Cornell University

7

• Fuzzing

– pros:

• require fewer human interventions

– con:

• have to deal with large search space

• Formal methods

– pros:

• can provably exclude possible vulnerabilities/attacks

– cons:

• require RTL of the processor

• require human to rewrite/implement the formal models

Existing Tools to Find Vulnerabilities

Cornell University

8

• RL: a machine learning scheme

– an agent generates an action sequence

– maximizes long-term reward

• RL has been applied in game settings

to show human-level performance

– games like Atari (single party)

– Chess, Go, etc. (two parties)

Reinforcement Learning

AlphaGo (Source: BBC)

Atari (source: OpenAI)

Cornell University

9

• Key notions

– agent

– environment (env)

– action

– observation

– reward

• Advantages of RL

– learns a sequence of actions → cache-timing attack is a sequence

– no dataset needed, just an env → a simulator/a real processor

Reinforcement Learning

Action

Reward

Observation

Agent

Environment

Sequence of actions

Cornell University

10

Outline

• RL formulation of cache-timing attack exploration

• RL finds attacks on diverse configurations of caches

• RL finds attacks on real-hardware

• RL discovers new attack patterns

Cornell University

11

• Agent: Attacker

• Environment: Cache

– architecture simulator

– cache in the processor

• Actions

– attacker makes an access

– attacker waits for victim access

– attacker guesses the secret

• Observation

– latency of attacker accesses

Cache-Timing Attack as an RL Game Action

Reward

Observation

Agent

Environment

Attacks Attacker

action

Victim

action

Observations

prime+probe access addrs access an addr attacker’s latency

flush+reload flush addrs access an addr attacker’s latency

evict+reload access addrs access an addr attacker’s latency

evict+time access addrs access addrs victim’s latency

Summary of actions of existing attacks

Cornell University

12

• Reward

– guess correct: positive reward

– guess wrong: negative reward

– each step: small negative

reward

• Maximizing long-term reward

– more correct guesses

– fewer wrong guesses

– fewer number of steps

Cache-Timing Attack as a Game Action

Reward

Observation

Agent

Environment

Attacks Attacker

action

Victim

action

Observations

prime+probe access addrs access an addr attacker’s latency

flush+reload flush addrs access an addr attacker’s latency

evict+reload access addrs access an addr attacker’s latency

evict+time access addrs access addrs victim’s latency

Summary of actions of existing attacks

Cornell University

13

AutoCAT: A Simple Example
• Settings

– 1 set 1-way cache

– attacker can access address 1

– victim secret: access 0 (0) / no access (N)

– attacker want to infer whether victim secret

is 0/N

• Attack found

– step 1: attacker accesses 1

– step 2: then wait for a while

– step 3: attacker accesses 1 again

– step 4: guess the secret 0/N

Cache

1

Attacker

address
Victim

address

0

access

miss

 e t

acti n

access

 ictim access

 en tri ere

 ri er

victim

miss

 ttacker can in er y c eckin

 r

 ictim access

 en tri ere

 an m ess re ar

 n icates t e ne t l ck t e evicte

Correct guess reward

wrong guess reward

Cornell University

14

AutoCAT: Framework Overview

RL Agent

Observed memory access latency

Reward

read/
write/
flush

attacker process

DNN Model

Environment

a3: guess

addrsecret

a2: trigger

victim

access
victim process

guess evaluator

a1: attacker

access

ActionS
ta

te

addrsecret

Attack Analysis

AutoCAT RL Engine

Attack Demonstration

on Real Hardware

AutoCAT RL Engine

Cache Interface

Target cache implementation

Cache
Simulator

attacker

& victim

config

or

Attack Sequence Generation

Real
Hardware

Attack Sequence (trajectory of actions)

Cache

Interface

time

C
a
c
h
e
 I

m
p
le

m
e
n
ta

ti
o
n

RL training

Cornell University

15

Outline

• RL formulation of cache-timing attack exploration

• RL finds attacks on diverse configurations of caches

• RL finds attacks on real-hardware

• RL discovers new attack patterns

Cornell University

16

• Number of sets/ways

• Type of caches

– direct-map/fully-associative/set-
associative

• Replacement policies

– least recently used (LRU)/re-

reference interval prediction (RRIP)

• Prefetchers

– none/stream/nextline

• Single-level/multi-level

AutoCAT: Attacks on Diverse Configurations

set

0
1
2

509
510
511

way

0 1 2 3 4 5 6 7

Cornell University

17

No Type Ways Sets Victim

address

Attacker

address

Accuracy

1 Direct-map 1 4 0-3 4-7 100%

4 Fully-associative 4 1 0/E 4-7 100%

13 Fully-associative+nextline 8 1 0/E 0-15 100%

16 2-level 2 4 0-3 4-11 100%

• Find attack patterns across 17 different configurations (No. 1-17)

– including direct-map, fully-associative, prefetchers, 2-level caches

AutoCAT: Attacks in Simulator

Excerpts from Table IV in the paper

Cornell University

18

Outline

• RL formulation of cache-timing attack exploration

• RL finds attacks on diverse configurations of caches

• RL finds attacks on real-hardware

• RL discovers new attack patterns

Cornell University

19

CPU Level Ways Rep policy Accuracy

Core i7-6700 L1 8 PLRU 100%

Core i7-6700 L2 4 Undocumented 99.9%

Core i7-6700 L3 4 Undocumented 100%

Core i7-7700K L3 4 Undocumented 100%

Core i7-7700K L3 8 Undocumented 99.3%

Core i7-9700 L1 8 PLRU 99.8%

Core i7-9700 L2 4 Undocumented 100%

• AutoCAT finds attacks without knowing the replacement policy

AutoCAT: Real Hardware

Cornell University

20

Outline

• RL formulation of cache-timing attack exploration

• RL finds attacks on diverse configurations of caches

• RL finds attacks on real-hardware

• RL discovers new attack patterns

Cornell University

21

AutoCAT: A New Attack Pattern

0 1 2 3 v? 4

loop

0 14

… …

• Setting:

– 4-way cache

– victim secret address from 0, 1, 2, 3

• Attack pattern:

– attacker accesses 0, 1, 2, 3 first

– victim accesses the secret address (always a hit)

– attacker accesses 4, 0, 1, measure the timing of 0 and 1

– depending on 0,1 hit/miss can infer the victim secret address

Cornell University

22

• No victim cache misses

• Works across different

processors

– 4 different Xeon/Core

processor tested

• Higher bandwidth than the

LRU-based attack

New Attack Pattern: StealthyStreamline

StealthyStreamline bandwidth and error rate

(top-left corner is better)

Cornell University

23

• Approach:
– Multi-agent reinforcement learning (RL)

for automatically exploring cache-timing
attacks and detection schemes together.

• Key Findings:
– Without any manual input from security

experts,
• the trained attacker is able to act more

stealthily

• the trained detector can generalize to
unseen attacks

• the trained detector is less exploitable to
high-bandwidth attacks.

MACTA: A Multi-agent Reinforcement Learning

Approach for Cache Timing Attacks and

Detection

Vulnerability analysis Propose defense

RL Environment

In simulation or

real hardware

DNN Model

S
ta

te

Attacker

Agent

DNN Model

S
ta

te

Detector

Agent

Cornell University

24

• To train a detector, we need both attacker scenario and

benign Scenario.

• For each agent, there are observation, action, and rewards,

respectively.

Multiagent RL Formulation

Detector
Agent

Attacker Program

rewards: Successful Attack without alarm: Attacker receives reward
 Unsuccessful Attack: Attacker
receives penalty

rewards: Correct Alarm: Detector
receives reward
 False Alarm or False Negative: Detector receives penalty

Attack Scenario

Victim Program
or

Benign Program 1

Benign Program 2

Benign Scenario

Cache

simulatora: If Detector alarms:
Terminate the programs

o: Observe latency

a: Memory accesses by
both programs

o: Observe memory accesses

by both programs

Cornell University

25

• Without any manual input from security experts,

– the trained MACTA detector can generalize to unseen attacks

MACTA Results

Conclusions and Future Works

• Reinforcement learning shows

promising results for exploring

the attacks and detection HW

vulnerabilities for CPS

• Would this method scale?

• How to understand the results

of the model?

• How about other security

problems?

26

Vulnerability analysis Propose defense

RL Environment

In simulation or

real hardware

DNN Model

S
ta

te

Attacker

Agent

DNN Model

S
ta

te

Detector

Agent

Learn more at https://rl4cas.github.io

Acknowledgements

27

Thank you for your time!

Cornell University

28

• Bypassing defense and detection techniques

– partition-locked (PL) cache

– autocorrelation-based detection similar to CC-Hunter [MICRO14]

– ML-based detection similar to Cyclone [MICRO19]

• Discussions

– comparison with search algorithms

• less number of steps compared with exhaustive search

– future extensions

• automated attack analysis

• scalability of the RL model

More in the Paper

Cornell University

29

• AutoCAT uses RL to explore cache-timing attacks in processors

– without explicit specification of processor design

– without knowing existing attack patterns

• AutoCAT found attack patterns

– on many configurations in the cache simulator/real hardware

– a new attack pattern: StealthyStreamline

Conclusion

Artifact available at: https://github.com/facebookresearch/AutoCAT

Cornell University

30

• Vulnerability is everywhere

– Stuxnet: nuclear power plant

– Cambridge Analytica: social networks

– Log4j: web infrastructure

– Spectre/Meltdown: computer hardware

• Huge dollars spent

– 2.5 trillion USD = GDP of UK (5th

largest country)

– finding and resolving vulnerabilities

Introduction: Cybersecurity

Source: fair institute

Cornell University

31

• Partition

– Attacker process and victim

process uses their own cache

lines without sharing with the

others

– E.g., PLCache

• Example: 4-way PLCache

– Way 0: victim process

exclusive

– Way 1-3: attacker

process exclusive

• Can AutoCAT find attacks on

PLCache?

Cache Defense Mechanism

set

0
1
2

509
510
511

P1 fills the

cache→ a1

P2 reads

an array →

a2

P1 reads its

data again→

a1

5 cycles (hit)
6 cycles (hit)

5 cycles (hit)
5 cycles (hit)
6 cycles (hit)

5 cycles (hit)

Way 0 Way 1 Way 2 Way 3

Used by victim

process
Used by attacker

process

Cornell University

32

AutoCAT’s Attack on PLCache

0 1

0 1 3

0 1 3 2

0 1 3 2

0 1 3 2

0 1 3 2

access 1

miss

hit

miss

miss

hit

N.A.

2 2

2 22 2

2 2 2 2

2 2 0 2

3 3

2 0 0 2

0 0 0 2

0 1

0 1 3

0 1 3 2

0 1 3 2

0 1 3 2

0 1 3 2

hit 2 2

2 22 2

2 2 2 2

2 2 0 2

3 3

3

2 0 0 2

2 0 0 2

Victim access 0 when

triggered

Victim no access when

triggeredNext action

Trigger victim

access 3

access 3

access 2

access 5

access 5

hit

miss

miss

miss

hit0 1

0 1

0 1

0 1 3

0 1 3

0 1 3 2

0 1

0 1

0 1

0 1 3

0 1 3

0 1 3 2

4 1 3 2
2 1 1

0 1 3 20 1 3 4
1

0 5 3 2

LRU addr 0 locked,

cannot be replaced

LRU addr 1 not locked,

can be replaced

N.A.

miss

Cornell University

33

• The cache access pattern by the attacker have specific

characteristics

Cache Timing Attack Detection

set

0
1
2

509
510
511

0 1

P1 fills the

cache
P2 reads

an array

replace

P2 reads

an array
P2 reads

an array

P1 reads

the cache
P1 reads

the cache
P1 reads

the cache

replace replacereplace replace

0 0 01 1 1

replace

Steps

Replacem

ent events

Event

encoding

none

Cornell University

34

• AutoCAT can generate attacks
that bypass CC-Hunter
– Textbook: prime+probe

– RL_baseline: training without
considering the CCHunter

– RL_autocor: training with consider
high autocor as penalty

• AutoCAT can generate attacks
that evade SVM detection
– RL_SVM: training with considering

SVM detection penalty

AutoCAT can Bypass the Detection

Cornell University

35

AutoCAT: A Simple Example

access

miss

 e t

acti n

access

 ictim access

 en tri ere

 ri er

victim

miss

 ttacker can in er y c eckin

 r

 ictim access

 en tri ere

 an m ess re ar

 n icates t e ne t l ck t e evicte

• Settings

– 1 set 2 way cache LRU

policy

– Attacker can access

address 0, 1, 2, 3

– Victim can access 0 or 1

– Attacker want to infer

whether victim accesses

0 or 1

• Reward

– Correct guess: 200

– Wrong guess: -10,000

cache0 1

0 1 2 3

Attacker

addresses

Victim

addresses

hit hit

Cornell University

36

•Computation affects the physical world, and an observer can measure physical effects

•Confidential information may leak through physical properties not intended for
communications
–Timing, power consumption, EM, temperature, acoustic, etc.

•Covert channels
–Use unintended physical properties to transmit information without the authorization or knowledge of a

system

• Side channels
–Unintentional covert channels

Covert and Side Channels

Cornell University

37

•Completely remove timing dependence
–Secure, but expensive

•More empirical protection
–Reduce the timing dependence (noise, coarser-grained resource allocation, etc)

–Detect an attack

–Less expensive, but difficult to provide a security guarantee

•Use ML to automatically generate attacks?
–A game between an attacker and a defender

Timing Channel Protection

Cornell University

38

• Infer secret information from target device by observing power

consumption

• Threat models require physical access or proximity to device

Side-Channel Attack: An Example

Source: Wikipedia

Source: Cryptography Research

Cornell University

39

• CC-Hunter: calculate the

autocorrelation of eviction encode

– High autocorrelation → likely an attack

– Low autocorrelation → likely a benign

program

• Cyclone

– Use SVM classifier to detect an attack

Cache Timing Attack Detection

A→ V

V→ A

time

events

a
u

to
c
o
r

Time lag

1

-1

autocorrelation

Eviction events

Cornell University

40

• AutoCAT can generate attacks

that bypass CC-Hunter

– Textbook: prime+probe

– RL_baseline: training without

considering the CCHunter

– RL_autocor: training with consider

high autocor as penalty

• AutoCAT can generate attacks

that evade SVM detection

– RL_SVM: training with considering

SVM detection penalty

AutoCAT can Bypass the Detection

attacker Bit rate Accuracy Detection

rate

textbook 0.1625 1.0 0.973

RL_baseline 0.229 0.989 0.933

RL_SVM 0.216 0.997 0.519

Cornell University

41

• Agent: Attacker

• Environment: Cache

– architecture simulator

– cache in the processor

• Actions

– a1: attack makes an access

– a2: wait for victim access

– a3: guess the secret

• Observation

– latency of attacker access

Cache-Timing Attack as an RL Game

set

0
1
2

509
510
511

P1 fills the

cache→ a1
P2 reads an

array → a2

P1 reads its

data again→ a1

hit
hit

hit
hit
hit

Action

Reward

Observation

Agent

Environment

Guess the

secret→ a3

miss

Cornell University

42

• Reward

– guess correct: positive reward

– guess wrong: negative reward

– each step: small negative

reward

• Maximizing long-term reward

– More correct guess

– Less wrong guess

– Less number of steps → shorter

attack sequence

Cache-Timing Attack as a Game

set

0
1
2

509
510
511

P1 fills the

cache→ a1
P2 reads an

array → a2

P1 reads its

data again→ a1

hit
hit

hit
hit
hit

Action

Reward

Observation

Agent

Environment

Guess the

secret→ a3

miss

Cornell University

43

Cache Timing Attack

set

0
1
2

509
510
511

P1 fills the

cache
P2 reads

an array

P1 reads its

data again

Slow (miss)

Fast (hit)
Fast (hit)

Fast (hit)
Fast (hit)
Fast (hit)

Cornell University

44

• We use RL to automatically explore
cache timing attacks in processors

• We find attacks on a diverse
configurations of caches
– Different replacement policies

– Different defense mechanisms

• We discover StealthyStreamline
attacks
– Bypass performance counter-based

detection

– Higher bandwidth

Executive Summary
RL Agent

Observed memory access latency

Reward

𝜇Arch Cache
Model

M
e

m
o

ry

Cache

attacker

process

DNN Model

Environment

ag: guess

addrsecret

av: trigger

victim
access

victim

process
guess

evaluator

ax: attacker

access

ActionS
ta

te

addrsecret

0 1 2 3 v? 4

New attack patterns

0 14

Cornell University

45

•Focuses on using ML to analyze existing power side-channel

traces and predict secrets
–Use a supervised learning model to analyze traces

–Auto-encoder to learn representations

Prior Work on ML for Side Channel

	Slide 1
	Slide 2: HW Affects CPS Security
	Slide 3: Finding HW Vulnerabilities is Hard
	Slide 4: Executive Summary
	Slide 5: Cache-Timing Attack: Powerful and Stealthy
	Slide 6: Why Finding new Cache-Timing Attack is Hard?
	Slide 7: Existing Tools to Find Vulnerabilities
	Slide 8: Reinforcement Learning
	Slide 9: Reinforcement Learning
	Slide 10: Outline
	Slide 11: Cache-Timing Attack as an RL Game
	Slide 12: Cache-Timing Attack as a Game
	Slide 13: AutoCAT: A Simple Example
	Slide 14: AutoCAT: Framework Overview
	Slide 15: Outline
	Slide 16: AutoCAT: Attacks on Diverse Configurations
	Slide 17: AutoCAT: Attacks in Simulator
	Slide 18: Outline
	Slide 19: AutoCAT: Real Hardware
	Slide 20: Outline
	Slide 21: AutoCAT: A New Attack Pattern
	Slide 22: New Attack Pattern: StealthyStreamline
	Slide 23: MACTA: A Multi-agent Reinforcement Learning Approach for Cache Timing Attacks and Detection
	Slide 24: Multiagent RL Formulation
	Slide 25: MACTA Results
	Slide 26: Conclusions and Future Works
	Slide 27: Acknowledgements
	Slide 28: More in the Paper
	Slide 29: Conclusion
	Slide 30: Introduction: Cybersecurity
	Slide 31: Cache Defense Mechanism
	Slide 32: AutoCAT’s Attack on PLCache
	Slide 33: Cache Timing Attack Detection
	Slide 34: AutoCAT can Bypass the Detection
	Slide 35: AutoCAT: A Simple Example
	Slide 36: Covert and Side Channels
	Slide 37: Timing Channel Protection
	Slide 38: Side-Channel Attack: An Example
	Slide 39: Cache Timing Attack Detection
	Slide 40: AutoCAT can Bypass the Detection
	Slide 41: Cache-Timing Attack as an RL Game
	Slide 42: Cache-Timing Attack as a Game
	Slide 43: Cache Timing Attack
	Slide 44: Executive Summary
	Slide 45: Prior Work on ML for Side Channel

