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Overview. Computer system components from different levels of abstraction—including circuits, architecture,
operating systems, and applications—work coherently to drive the information world forward. Securing modern
computer systems against an ever-evolving threat landscape is major challenge that requires new approaches. First,
modern general-purpose computer systems have become very complex and they are error-prone and laborious to
inspect manually for security. Formal methods are typically constrained by scalability, and empirical testing methods
can be time consuming. AI-enabled attackers also increase the offensive capabilities targeting these computer
systems. Second, novel applications, especially AI applications such as compound AI [1] and embodied AI [2], are
making computer systems increasingly heterogeneous. Specialized hardware, such as hardware accelerators and
in/near-memory processing architectures, adds new attack surfaces. The interaction between AI algorithms and
underlying systems further complicates efforts to secure these AI systems.
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Figure 1: The interaction of AI with systems in the security context. AI methods can be used to
improve system security, and systems that implement AI have unique security concerns.

To mitigate the security risks of modern computer systems, we need to address the security issues of both
general-purpose systems and AI systems. As Figure 1 shows, AI methods can be used to improve system security,
and the security of systems used to implement AI needs to be evaluated. The two main thrusts of my research are:

• Using AI methods for security of general-purpose computer systems;

• Finding vulnerabilities in AI systems.

First, emerging AI methods such as large language models, reinforcement learning, deep neural networks, and
traditional supervised learning have demonstrated exceptional performance in various tasks, achieving superhuman
levels in some areas. A major aspect of my graduate research is using AI methods to evaluate and improve system
security. Specifically, one direction of my past work focused on general-purpose computer architecture security
problems using reinforcement learning.

Second, AI-integrated computer systems—such as compound AI systems, embodied AI systems, cloud AI sys-
tems, and hardware neural networks have unique interfaces, architectures, and hardware specializations, which make
their vulnerabilities different from general-purpose systems. Thus, another main thrust of my research is finding
vulnerabilities in AI systems.

In the rest of the statement, I first describe my research on using AI methods for general-purpose system security,
then I describe the second thrust on finding vulnerabilities in AI systems. Finally, I will outline future directions.

AI Methods for General-Purpose System Security

In this thrust, I use AI methods, specifically reinforcement learning (RL), to tackle CPU microarchitecture security
challenges, focusing on the attack and detection of side-channel attacks in microprocessors. The aggressive per-
formance optimizations in modern microprocessors can result in security vulnerabilities like cache timing attacks
and speculative execution attacks. However, the current study of microarchitectural vulnerabilities relies heavily
on heuristics and human expertise, which is inefficient and laborious.

In contrast, RL offers a promising approach for exploration of microarchitectural attacks. RL employs an agent
controlled by a model to interact with an environment. The agent performs one action at each iteration, and the
environment then provides feedback in the form of the corresponding state and reward. This state and reward are
used to update the model within the agent. RL has been demonstrated to be useful to achieve superhuman perfor-
mance in Go [3], video games [4], chip design [5], algorithm design [6], [7], and biology [8]. However, applying RL to



a microarchitecture security problem faces several challenges in the formulation, generalization, and adaptivity. My
research work AutoCAT [9], MACTA [10], AlphaEvict [11], SpecRL [12] addresses these challenges and successfully
demonstrate the capability of RL in solving a wide range of RL security problems.
RL for Exploration of Cache Timing and Speculative Execution Attacks. One of the main challenges in
exploring cache timing attacks as an RL problem is the formulation. Cache timing attacks leverage cache access
timing to infer the memory access pattern of the victim program. It can be represented by a sequence of assembly
instructions that cause information leakage. However, gathering sufficient amount of such sequences and determining
whether a sequence is a useful attack sequence that causes timing leakage is non-trivial. To address this challenge,
my research work, AutoCAT [9], formulates the cache-timing attack as a guessing game between an attack program
and a victim program holding a secret. The agent will be rewarded for guess the secret correctly. By playing
this game many times using modern deep RL techniques, the agent can thus gather sufficient data. AutoCAT can
explore attacks across various cache configurations without requiring knowledge of design details and can operate
under different attack and victim program configurations. AutoCAT can also discover attacks that bypass certain
detection and defense mechanisms, as well as a new attack StealthyStreamline that beats the then state-of-the-
art attacks. AutoCAT is the first tool of its kind to use RL for crafting microarchitectural timing-channel attack
sequences, enabling accelerated exploration of cache timing channels for secure microprocessor designs. Similarly, in
SpecRL [12], we leverage RL to explore more advanced speculative attacks on real processors, identifying Spectre-V1
attacks in more efficiently compared to existing state-of-the-art processor fuzzing tools.
Multi-agent RL for Detection of Adaptive Cache Timing Attacks. Reinforcement learning can also be
used for defense purposes, such as training a cache-timing attack detector with high accuracy. We can collect
microarchitectural traces of attack and benign programs and train a classifier to distinguish between them. How-
ever, detectors trained using supervised learning or baseline single-agent RL lack adaptivity, meaning they cannot
effectively counter an adaptive attacker whose behavior evolves to bypass detection. To build a robust detector
against adaptive attackers, in my research work MACTA [10], we use a multi-agent approach in which one agent
represents the adaptive attacker, and the other agent represents the detector. Multi-agent RL trains a highly capa-
ble attacker that can evade many existing detectors, as well as a powerful detector that achieves a higher detection
rate against adaptive attackers. The experiment results suggest that MACTA is an effective solution without any
manual input from security experts. MACTA detectors generalize well to heuristic attacks not encountered during
training, achieving a higher detection rate and reducing the attack bandwidth of RL-based attackers. Meanwhile,
MACTA attackers are qualitatively more effective than other studied attacks, with an average evasion rate of up to
99% against an unseen state-of-the-art detector.
Meta RL for Eviction Set-Finding. Baseline RL backs adaptivity to different environment, making it unfit
for problems like eviction set-finding. An eviction set refers to a set of addresses that map to the same cache
set. Finding an eviction set in the last-level cache is crucial for enabling cross-core cache-timing attacks. Cache
slicing, address translation, and cache randomization make each processor instance unique, thus it is non-trivial to
identify eviction sets. Traditional methods like single-holdout and group elimination [13] rely on human expertise.
However, baseline RL needs to be trained in a specific environment and generally does not adapt well to different
environments. Thus, an eviction set-finding agent generated by baseline RL would not be able to find eviction
sets on a different processor. To address this challenge, my research [11] uses an advanced meta RL technique
[14] to train a super-agent capable of adapting to various instances with different address-to-cache set mappings.
Specifically, we formulate the eviction set-finding algorithm as an RL problem, optimizing the number of memory
accesses the agent needs to deterministically evict the target address. We then train this RL agent on multiple cache
instances with different address randomizations. The trained agent embodies an algorithm that can find eviction
sets on any randomized cache, demonstrating the effectiveness of RL-based algorithm development.

Finding Vulnerabilities in AI Systems

AI systems are specialized towards AI workloads, which make the attack surface different from a general-purpose
system. One thrust of my research focuses on discovering vulnerabilities in these AI systems, including compound AI
systems for enterprises, embodied AI systems for autonomous and robotic vehicles, and hardware neural networks.
Vulnerabilities in Compound AI systems. Compound AI systems integrate computation, storage, and interface
components on top of traditional ML models, making them more useful for real-world applications. My survey paper
[15] systematizes the security risks of compound AI systems. In addition to systematization effort, I also studied and
found new vulnerabilities in a concrete compound AI system, i.e., Retrieval-augmented generation (RAG). RAG is
a system where a large language model is integrated with a database to ground responses with factual information.
It is vulnerable to prompt engineering attacks that target the LLM as well as attacks on the retrieval process
from the database. Despite this, the security risks of RAG vulnerabilities have not been systematically studied. I
introduce ConfusedPilot [16], a class of security vulnerabilities in RAG systems that confuses Copilot, leading to
integrity and confidentiality violations in its responses. First, I investigate a vulnerability that embeds malicious
text in the modified prompt within RAG, corrupting the responses generated by the LLM. Second, I demonstrate a



vulnerability that leverages the caching mechanism during retrieval to leak secret data. Third, we explore how both
vulnerabilities can be exploited to propagate misinformation within an enterprise, ultimately impacting operations
such as sales and manufacturing. I also discuss the root causes of these attacks by examining the architecture of a
RAG-based system. This study highlights the security vulnerabilities in today’s RAG-based systems and proposes
design guidelines to secure future RAG-based systems, which is important for the practical adoption of RAG in
large enterprises.
Vulnerabilities in Embodied AI Systems. Embodied AI integrates machine learning, sensors, and actuators
with computer systems. Typical examples of embodied AI systems include humanoid robots and autonomous
vehicles. Because embodied AI systems interact with the physical world, the security and privacy risks extend to
the physical realm as well. My research focuses on demonstrating the security risks of these embodied AI systems,
including autonomous and robotic vehicles. In [17], I show that the location privacy of an autonomous vehicle
may be compromised by software side-channel attacks if localization software shares a hardware platform with
an attack program. Specifically, we demonstrate that a cache side-channel attack can be used to infer the route
or location of a vehicle running the adaptive Monte Carlo localization (AMCL) algorithm. This work flags the
massive privacy risks of autonomous vehicles. In [18], I show the physical integrity of robotic vehicles protected by
a trusted execution environment (TEE) against interrupt attacks, demonstrating that even with strong protections
from TEE, the perception of robotic vehicles can be significantly altered, leading to path deviation and crashes. My
research shows that embodied AI systems are vulnerable to these security vulnerabilities originating from system-
level threats. Additionally on the defense side, my research [19] proposes methods for securing embodied AI systems
via information flow control. To ensure responsiveness, I propose an algorithm-hardware co-optimization approach
[20] to accelerate path planning in a high-dimensional search space by leveraging content-addressable memory. My
research demonstrates risks and provides guidelines for secure embodied AI system.
Vulnerabilities of Hardware Neural Network. Deep neural network inference is computationally intensive, and
general-purpose processors are not efficient for this task. Instead, specialized hardware targeting neural networks
has proven to be more efficient. Furthermore, the approximate nature of neural network applications allows them
to tolerate slightly imprecise results caused by process, temperature, and noise [21]–[23]. Slight data corruptions
[24] in data centers can also negatively impact these AI workloads. One of my project [25], [26] is to study how
these variations impact the quality of results produced by neural networks and how to optimize neural network
weights to account for these variations. We demonstrate that process variations can significantly affect the accuracy
of hardware neural networks. However, through retraining, we can modify the neural network weights to adapt to
these performance variations.

Future Research

My current work focuses on demonstrating and evaluating the vulnerabilities of existing systems. Inspired by AI
methods, I aim to develop new design methodologies, hardware, and algorithms that are free from these vulnera-
bilities moving forward.
AI for Cross-level System Security. My current work leverages AI to explore vulnerabilities at the microar-
chitecture level. However, recent attacks exploit vulnerabilities across the system stack [27], making it insufficient
to focus solely on vulnerabilities at the microarchitecture level. Reinforcement learning remains a potential tool for
exploring these cross-level vulnerabilities. To this end, I plan to model the attacker as an RL agent, with actions
ranging from measuring performance counters, executing assembly programs, and invoking system calls to inspect-
ing network packets. With this agent trained via RL, it can generate end-to-end attacks that exploit vulnerabilities
at different levels. My long-term goal is to train a single monolithic agent capable of finding vulnerabilities at any
level on any system without human intervention. Achieving this will require creative approaches to incorporate
the vast observation and action spaces that account for all levels and system configurations, as well as innovations
in learning algorithms and substantial computational power levering high-performance computing and distributed
systems. The ultimate goal is to create the AI doctor for vulnerability discovery.
AI for Security Verification. While we have demonstrated RL’s capabilities in finding vulnerabilities such as
microarchitectural side channels, proving that a system is free of vulnerabilities remains challenging. Traditional
formal verification methods like model checking require enumerating the entire state space. Theorem proving using
proof assistant such as Coq [28], on the other hand, uses axioms to prove security properties without enumerating the
entire state space. Traditionally, these proofs are difficult to write and come with a steep learning curve. However,
recent advances have demonstrated the use of LLMs as proof copilots [29]. In the short term, I plan to evaluate these
LLM-based copilots for proving microarchitecture security properties such as non-interference. In the long term,
the goal is to build a security verification agent with fully automated, scalable theorem proving capability using
LLMs with minimal human intervention. Achieving this would require breakthroughs in the reasoning capabilities
of LLMs. With this AI verifier, I envision any practical-size systems can be verified automatically.
Explainable AI for System Security. While my current work successfully applies AI methods to system security
problems, a key limitation is the lack of explainability in AI-generated results. In my previous work, AutoCAT



[9], although it is capable of generating novel attacks, AI-generated attacks differ from human-designed attacks
in their lack of explainability. AI-generated attacks can include multiple steps with varying contributions to the
success of the attack. Without explainability, it is not only challenging to understand AI-generated solutions but
also difficult to generalize these solutions to similar yet different scenarios. A short-term plan is to incorporate
explainable AI (xAI) techniques to analyze AI-generated solutions in microarchitecture attacks, similar to [30].
This approach can pinpoint critical steps in AI-generated solutions, helping humans design and generalize similar
solutions more efficiently. Additionally, xAI can be combined with large language models to automatically generate
natural language-based explanations. I envision this AI explainer can eventually find vulnerabilities and generate
paper-quality reports that offer insights to fellow researchers.
Securing AI Algorithms with Information Flow Control. From an algorithmic perspective, many vul-
nerabilities in AI systems originate purely at the algorithm level. As my paper [16] demonstrates, the lack of
distinction between control-plane and data-plane information causes confused deputy risks in RAG-based AI sys-
tems. Information Flow Control (IFC), which labels and tracks the provenance of each piece of information, is a
useful tool for managing these access control risks. My previous work [19] applied IFC in robotics; I plan to adopt
IFC for emerging generative AI systems, including LLMs and RAGs, to enhance their security [31]. One challenge
preventing the mass adoption of IFC is the high cost of labeling, which is typically performed by humans. I plan
to explore automated labeling techniques with the help of LLMs to make IFC in generative AI more user-friendly.
With strict enforcement of access control through IFC, I believe future LLMs and RAGs can be free of security
violations. In the long term, I believe programming language and architecture support is required to embed IFC in
compound AI systems automatically.
Hardware Support for Secure Compound AI. At the hardware level, secure hardware, such as trusted exe-
cution environments (TEEs), provides basic separation and security assurances. Commercial TEEs like Intel SGX,
TDX, and AMD SEV have been relatively successful in general-purpose computing. However, as my previous work
[18] shows, these TEEs provide insufficient protection, leaving embodied AI systems vulnerable. To offer stronger
security guarantees for these AI systems, I plan to explore new TEE architectures that offer customizability for
performance and real-time awareness, to compound AI systems.
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