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Contention-based Cache Timing Channel and
Cache Randomization

* Eviction set and contention-based timing channel

* Acollection of addresses map to the same cache set

* Accesses some of these addresses may evict a victim address that maps
to the same cache set

* Access pattern leaked by the timing measurement

e Cache randomization

* There exist a mapping function: addresses > cache set/locations

* for non-randomized caches, mapping function is trivial
* Forrandomized caches, mapping function is not visible to the programs




Cache Timing Attacks Arms Race

* Randomization makeés it hard to find eviction set
(more steps needed)
e CEASE(R-s)
e ScatterCache
e RPCache
* NewCache

* More powerful eviction set-finding invalidates
randomization defense

Mapping function -=

Randomized cache




The Evolution of Eviction Set-Finding
Algorithms

* Finding S addresses out of A addresses that cause eviction

* Single holdout method' (SHM)
* Group elimination®3 (GEM)
* Prime+Prune+Probe*(PPP)
* Exploiting cache hierarchy®

Remark: Eviction Set-Finding Algorithms are key to enable stronger cache timing

atta C kS 1.Last-Level Cache Side-Channel Attacks are Practical, Liu, Oakland, 2015 2. New Attacks and Defense for Encrypted-Address Cache, Qureshi,
ISCA, 2019 3. Theory and Practice of Finding Eviction Sets, Vila, Oakland, 2019 4. Systematic Analysis of Randomization-Based Protected Cache
Architectures. Purnal, et. al. 2021 5. Last-Level Cache Side-Channel Attacks Are Feasible in the Modern Public Cloud, Zhao, et al., ASPLOS,
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RL for Games

Big Success in Games

StarCraft |

(courtesy of Dr. Yuandong Tian)


https://commons.wikimedia.org/wiki/File:Chess_king.jpg

RL for Algorithm Development

Theinternational journalofscience/6October2022
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Motivation

* For better/stronger attacks, we need efficient algorithms for
eviction set-finding

* RL is capable of finding more efficient algorithms

Research Question: Can we use RL to find algorithms for eviction set

finding?
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Example Problems RL Solves

* Maze Solving
* Finding Cache Timing Attacks




Maze Solving with RL
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AutoCAT: RL for Attack on Non-Randomized
Cache

Agent: Attacker
Environment: Cache
Actions

. — attacker makes an access
_Eggg m — attacker waits for victim access
<—— Slow (miss) — attacker guesses the secret

* Observation

— latency of attacker accesses

<— Fast (hit) * Reward

set

«— Fast (hit) — guess correct: positive reward
<+<— Fast (hit) — guess wrong: negative reward
attacker fills  victim reads  attacker reads — each step: small negative reward
the cache an array its data again

AutoCAT: Reinforcement Learning for Automated Exploration of Cache-Timing Attacks, Luo, et al, HPCA, 2023



AutoCAT Limitation

* Only works for non-randomized caches

* Agent trained for one-randomization mapping does not work for other
mapping functions

Challenge : needs a way to incorporate different mapping functions in
a randomized cache
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RL Formulation: Evicting N Bits
* Given
* arandomized cache with unknown mapping function

e Avictim address to be evicted
e Aconstant N

* Find

* ARL policy that generates a sequence of memory accesses
* Objective

* minimizes the number of memory accesses (cost)

e Constraint
 the victim address is evicted N times
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Evaluation Goals

* Train an RL agent that minimizes the number of steps to find
minimal eviction set on randomized caches
* Q1:Isthe agent able to evict victim address on randomized caches?
* Q2: Are the addresses in the eviction sequence forming an eviction set?
* Q3: Are the eviction set found by the agent a minimal eviction set?
* Q4: how many steps does it take to find a minimal eviction set?




Evaluation Example
* Cache setting
* A4-set 2-way cache example
« Address used: 0-8 “

* Address 0-8 is randomly mapped to different cache locations
* Victim addressisO

s

* RL setting 7

* Evictvictim address N times (N=1, 5)

* Episode length L (humber of memory accesses) indicates the complexity

. 4-set 2-way cache
* |deal case analysis

* N =1, noneed to actually “figure out” the eviction set of 0, just occupancy
channel style accessing all addresses, L=8

* N=5, thereis a need to reduce the number of steps to cause one eviction
(figuring out a eviction set), L >= N * size(min_evset) + cost(evset_finding) address 0-8 rando mly

e Size(min_evset)=2,N=5

e L>=2*5+cost(evset_finding) mapped tO different Set




Evaluated Cases

Cache

Configuratio Epochs  Episode Victim Eviction Cache
n Trained Length Evicted Setsize ways
2set2way 52 41 yes 2 2
4set2way 10 60.35 yes 2 2
2set4way 114 38.82 yes 4 4

Q1: Is the RL agent able to evict victim address on randomized caches?
Q2: Are the addresses in the eviction sequence forming an eviction set?
Qa3: Are the eviction set found by the RL agent a minimal eviction set?
Q4: how many steps does it take to find a minimal eviction set?

Steps
taken

29
48
19

27
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Conclusion and Future Work

* Conclusion
* randomized cache increases the difficulty of eviction set-finding

* Reinforcement learning is a useful tool for effective eviction set finding on
randomized caches

 Future Work

* Scale to larger cache sizes and address space

 Complexity analysis and comparison with existing eviction-set finding
algorithms

* Evaluate on partial congruent scheme, e.g., ScatterCache

29



Meta RL

* Solving a class of problems rather than a single
Instance )
« Examples ' '
* E.g., solving any maze
* E.g., finding out eviction sequence of any mapping function
* |Input: a meta parameter (may not be in the training set)
* Output: a policy corresponding to that parameter

* Using Meta RL, a super agent (policy generator) learns
to solve a class of problems S

Training signal ;]
* In general, an algorithm solves a class of problems |r W”d \‘ st
* Thus, this super agent from Meta RL represents an algorithm | +? e
» E.g., an algorithm that given the description of the maze, generatt | e I N
a policy that solves the maze l N |
* E.g., analgorithm that given the mapping function of a cache, fint — — — < — G — — —

eviction set for particular address

1. Meta-Reinforcement Learning of Structured Exploration Strategies, Gupta et al, NIPS, 2018.
2. Reinforcement learning, fast and slow,Botvinick, 2018
3. https://www.uber.com/blog/poet-open-ended-deep-learning/




Hidden Meta Parameter

* Problem: For Randomized caches, the attacker does not see
mapping function directly
* The meta parameteris not visible to the agent
* The input to the super agent is the same

* Solution: random sampling hidden meta parameter from a
distribution during training

* i.e., use different mapping functions (invisible to the agent) during training, so
that the super agent learns the mapping and then find ways to evict the
target address

* Super Agent = An algorithm that evict an address for any mapping
(randomization) function =/= an algorithm that finds eviction sets
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