

Eviction Set-Finding on Randomized Caches with Reinforcement

Learning

Mulong Luo and Mohit Tiwari The University of Texas at Austin mulong@utexas.edu

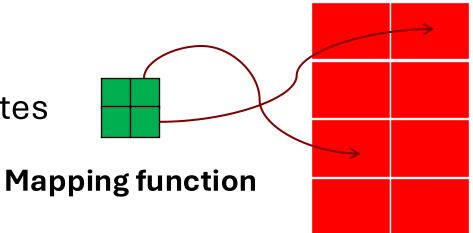
- Background and Motivation
- Challenges
- RL Formulation
- Evaluation
- Conclusion and Future Work

Contention-based Cache Timing Channel and Cache Randomization

- Eviction set and contention-based timing channel
 - A collection of addresses map to the same cache set
 - Accesses some of these addresses may evict a victim address that maps to the same cache set
 - Access pattern leaked by the timing measurement
- Cache randomization
 - There exist a mapping function: addresses \rightarrow cache set/locations
 - for non-randomized caches, mapping function is trivial
 - For randomized caches, mapping function is not visible to the programs

Cache Timing Attacks Arms Race Randomization makes it hard to find eviction set

- (more steps needed)
 - CEASE(R-s)
 - ScatterCache
 - RPCache
 - NewCache
- More powerful eviction set-finding invalidates randomization defense



Randomized cache

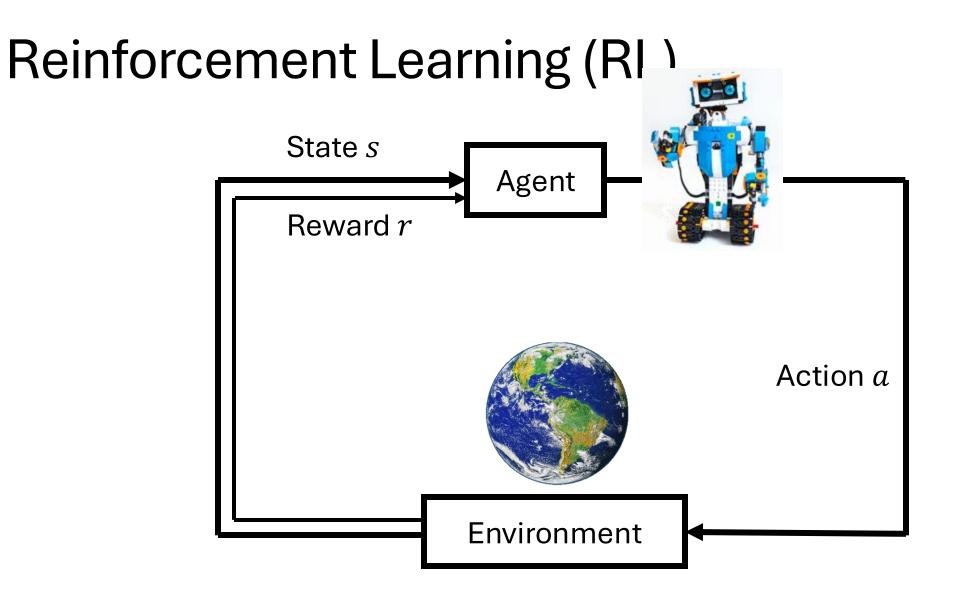
The Evolution of Eviction Set-Finding Algorithms

- Finding S addresses out of A addresses that cause eviction
 - Single holdout method¹ (SHM)
 - Group elimination^{2,3} (GEM)
 - Prime+Prune+Probe⁴ (PPP)
 - Exploiting cache hierarchy⁵

Remark: Eviction Set-Finding Algorithms are key to enable stronger cache timing

attacks

1.Last-Level Cache Side-Channel Attacks are Practical, Liu, Oakland, 2015 2. New Attacks and Defense for Encrypted-Address Cache, Qureshi, ISCA, 2019 3. Theory and Practice of Finding Eviction Sets, Vila, Oakland, 2019 4. Systematic Analysis of Randomization-Based Protected Cache Architectures. Purnal, et.al. 2021 5. Last-Level Cache Side-Channel Attacks Are Feasible in the Modern Public Cloud, Zhao, et al., ASPLOS, 2024



RL for Games

Go

Chess

Shogi

Poker

DoTA 2

StarCraft II

Big Success in Games

(courtesy of Dr. Yuandong Tian)

RL for Algorithm Development

AlphaTensor (DeepMind)

$\begin{pmatrix} c_1 & c_2 \\ c_3 & c_4 \end{pmatrix} = \begin{pmatrix} c_1 & c_2 \\ c_3 & c_4 \end{pmatrix} = \begin{pmatrix} c_1 & c_2 \\ c_3 & c_4 \end{pmatrix}$	$ \begin{array}{ccc} a_1 & a_2 \\ a_3 & a_4 \end{array} \right) \cdot \begin{pmatrix} b_1 & b_2 \\ b_3 & b_4 \end{pmatrix} $
$m_1 = (a_1 + a_4)(b_1 + b_4)$	$m_5 = (a_1 + a_2)b_4$
$m_2 = (a_3 + a_4)b_1$	$m_6 = (a_3 - a_1)(b_1 + b_2)$
$m_3 = a_1(b_2 - b_4)$	$m_7 = (a_2 - a_4)(b_3 + b_4)$
$m_4 = a_4(b_3 - b_1)$	$c_1 = m_1 + m_4 - m_5 + m_7 \qquad c_3 = m_2 + m_4$
4 44 5 217	$c_2 = m_3 + m_5$ $c_4 = m_1 - m_2 + m_3$

AlphaDev (DeepMind)

mov	R	S
стр	Ρ	R
cmovl	Ρ	S
mov	S	P
стр	S	Q
cmovg	Q	Р
cmovg	S	Q

A. Fawzi et al, Discovering faster matrix multiplication algorithms with reinforcement learning, Nature'22

(Adding one low-rank approximation at a time)

D. Mankowit et al, *Faster sorting algorithms discovered* using deep reinforcement learning, Nature'23

(Adding one instruction at a time)

Motivation

- For better/stronger attacks, we need efficient algorithms for eviction set-finding
- RL is capable of finding more efficient algorithms

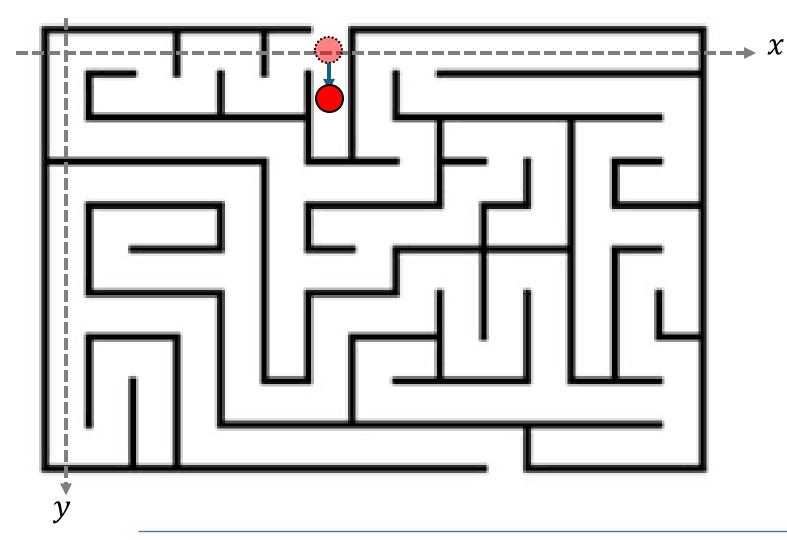
Research Question: Can we use RL to find algorithms for eviction set finding?

- Background and Motivation
- Challenges
- RL Formulation
- Evaluation
- Conclusion and Future Work

Example Problems RL Solves

- Maze Solving
- Finding Cache Timing Attacks

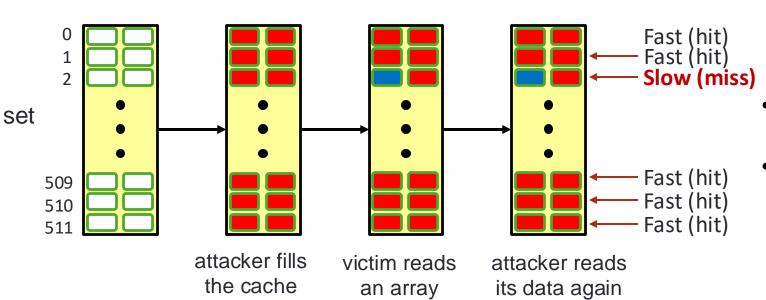
Maze Solving with RL



State: s = (x, y) = (6, 0)

Actions: Left: $x \leftarrow x - 1$ Right: $x \leftarrow x + 1$ Up: $y \leftarrow y - 1$ Down: $y \leftarrow y + 1$

AutoCAT: RL for Attack on Non-Randomized Cache



- Agent: Attacker
- Environment: Cache
- Actions
 - attacker makes an access
 - attacker waits for victim access
 - attacker guesses the secret
 - Observation
 - latency of attacker accesses
- Reward
 - guess correct: positive reward
 - guess wrong: negative reward
 - each step: small negative reward

AutoCAT Limitation

- Only works for non-randomized caches
 - Agent trained for one-randomization mapping does not work for other mapping functions

Challenge : needs a way to incorporate different mapping functions in a randomized cache

- Background and Motivation
- Challenges
- RL Formulation
- Evaluation
- Conclusion and Future Work

RL Formulation: Evicting N Bits • Given

- a randomized cache with unknown mapping function
- A victim address to be evicted
- A constant N
- Find
 - A RL policy that generates a sequence of memory accesses
- Objective
 - minimizes the number of memory accesses (cost)
- Constraint
 - the victim address is evicted N times

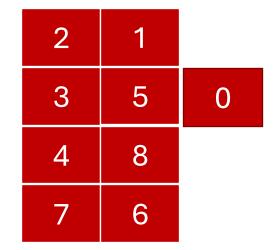
- Background and Motivation
- Challenges
- RL Formulation
- Evaluation
- Conclusion and Future Work

Evaluation Goals

- Train an RL agent that minimizes the number of steps to find minimal eviction set on randomized caches
 - Q1: Is the agent **able to evict victim address** on randomized caches?
 - Q2: Are the addresses in the eviction sequence forming an **eviction set**?
 - Q3: Are the eviction set found by the agent a **minimal eviction set**?
 - Q4: how **many steps** does it take to find a minimal eviction set?

Evaluation Example

- Cache setting
 - A 4-set 2-way cache example
 - Address used: 0-8
 - Address 0-8 is randomly mapped to different cache locations
 - Victim address is 0
- RL setting
 - Evict victim address N times (N=1, 5)
 - Episode length L (number of memory accesses) indicates the complexity
- Ideal case analysis
 - N =1, no need to actually "figure out" the eviction set of 0, just occupancy channel style accessing all addresses, L= 8
 - N=5, there is a need to reduce the number of steps to cause one eviction (figuring out a eviction set), L >= N * size(min_evset) + cost(evset_finding)
 - Size(min_evset) = 2, N = 5
 - L >= 2 *5 + cost(evset_finding)



4-set 2-way cache

address 0-8 randomly mapped to different set

Evaluated Cases

Cache Configuratio n	Epochs Trained	Episode Length	Victim Evicted	Eviction Set size	Cache ways	Steps taken
2 set 2 way	52	41	yes	2	2	29
4 set 2 way	10	60.35	yes	2	2	48
2 set 4 way	114	38.82	yes	4	4	19

Q1: Is the RL agent able to evict victim address on randomized caches?Q2: Are the addresses in the eviction sequence forming an eviction set?Q3: Are the eviction set found by the RL agent a minimal eviction set?Q4: how many steps does it take to find a minimal eviction set?

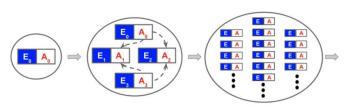
- Background and Motivation
- Challenges
- RL Formulation
- Evaluation
- Conclusion and Future Work

Conclusion and Future Work

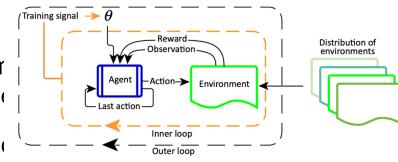
- Conclusion
 - randomized cache increases the difficulty of eviction set-finding
 - Reinforcement learning is a useful tool for effective eviction set finding on randomized caches
- Future Work
 - Scale to larger cache sizes and address space
 - Complexity analysis and comparison with existing eviction-set finding algorithms
 - Evaluate on partial congruent scheme, e.g., ScatterCache

Meta RL¹

- Solving a class of problems rather than a single instance
 - Examples
 - E.g., solving any maze
 - E.g., finding out eviction sequence of any mapping function
 - Input: a meta parameter (may not be in the training set)
 - Output: a policy corresponding to that parameter
- Using Meta RL, a super agent (policy generator) learns to solve a class of problems
 - In general, an algorithm solves a class of problems
 - Thus, this super agent from Meta RL represents an algorithm
 - E.g., an algorithm that given the description of the maze, generate a policy that solves the maze
 - E.g., an algorithm that given the mapping function of a cache, fine eviction set for particular address



A class of problems in Meta RL^3



Meta RL $^{\rm 2}$

- 1. Meta-Reinforcement Learning of Structured Exploration Strategies, Gupta et al, NIPS, 2018.
- 2. Reinforcement learning, fast and slow, Botvinick, 2018
- 3. https://www.uber.com/blog/poet-open-ended-deep-learning/

Task 3134.013

Hidden Meta Parameter

- **Problem:** For Randomized caches, the attacker does not see mapping function directly
 - The meta parameter is not visible to the agent
 - The input to the **super agent** is the same
- **Solution:** random sampling hidden meta parameter from a distribution during training
 - i.e., use different mapping functions (invisible to the agent) during training, so that the super agent learns the mapping and then find ways to evict the target address
- Super Agent = An algorithm that evict an address for any mapping (randomization) function =/= an algorithm that finds eviction sets