
Eviction Set-Finding on Randomized
Caches with Reinforcement
Learning
Mulong Luo and Mohit Tiwari
The University of Texas at Austin
mulong@utexas.edu

1

Outline

• Background and Motivation
• Challenges
• RL Formulation
• Evaluation
• Conclusion and Future Work

Contention-based Cache Timing Channel and
Cache Randomization
• Eviction set and contention-based timing channel

• A collection of addresses map to the same cache set
• Accesses some of these addresses may evict a victim address that maps

to the same cache set
• Access pattern leaked by the timing measurement

• Cache randomization
• There exist a mapping function: addresses → cache set/locations

• for non-randomized caches, mapping function is trivial
• For randomized caches, mapping function is not visible to the programs

3

Cache Timing Attacks Arms Race
• Randomization makes it hard to find eviction set

(more steps needed)
• CEASE(R-s)
• ScatterCache
• RPCache
• NewCache

• More powerful eviction set-finding invalidates
randomization defense

Mapping function

Randomized cache

The Evolution of Eviction Set-Finding
Algorithms

• Finding S addresses out of A addresses that cause eviction
• Single holdout method1 (SHM)
• Group elimination2,3 (GEM)
• Prime+Prune+Probe4 (PPP)
• Exploiting cache hierarchy5

Remark: Eviction Set-Finding Algorithms are key to enable stronger cache timing
attacks 1.Last-Level Cache Side-Channel Attacks are Practical, Liu, Oakland, 2015 2. New Attacks and Defense for Encrypted-Address Cache, Qureshi,

ISCA, 2019 3. Theory and Practice of Finding Eviction Sets, Vila, Oakland, 2019 4. Systematic Analysis of Randomization-Based Protected Cache
Architectures. Purnal, et. al. 2021 5. Last-Level Cache Side-Channel Attacks Are Feasible in the Modern Public Cloud, Zhao, et al., ASPLOS,
2024

Reinforcement Learning (RL)

6

Agent

Environment

Action 𝑎

State 𝑠

Reward 𝑟

RL for Games

Big Success in Games

DoTA 2 StarCraft II

Go Chess Shogi Poker

(courtesy of Dr. Yuandong Tian)

https://commons.wikimedia.org/wiki/File:Chess_king.jpg

RL for Algorithm Development

A. Fawzi et al, Discovering faster matrix multiplication
algorithms with reinforcement learning, Nature’22

AlphaTensor (DeepMind)

𝑐1 𝑐2

𝑐3 𝑐4
=

𝑎1 𝑎2

𝑎3 𝑎4
⋅

𝑏1 𝑏2

𝑏3 𝑏4

𝑚1 = 𝑎1 + 𝑎4 𝑏1 + 𝑏4

𝑚2 = 𝑎3 + 𝑎4 𝑏1

𝑚3 = 𝑎1 𝑏2 − 𝑏4

𝑚4 = 𝑎4 𝑏3 − 𝑏1

𝑚5 = (𝑎1+𝑎2)𝑏4

𝑚6 = (𝑎3−𝑎1)(𝑏1 + 𝑏2)

𝑚7 = (𝑎2−𝑎4)(𝑏3 + 𝑏4)

𝑐1 = 𝑚1 + 𝑚4 − 𝑚5 + 𝑚7

𝑐2 = 𝑚3 + 𝑚5

𝑐3 = 𝑚2 + 𝑚4

𝑐4 = 𝑚1 − 𝑚2 + 𝑚3 + 𝑚6

AlphaDev (DeepMind)

mov R S

cmp P R

cmovl P S

mov S P

cmp S Q

cmovg Q P

cmovg S Q

D. Mankowit et al, Faster sorting algorithms discovered
using deep reinforcement learning, Nature’23

(Adding one low-rank approximation at a time) (Adding one instruction at a time)
(courtesy of Dr. Yuandong Tian)

Motivation

• For better/stronger attacks, we need efficient algorithms for
eviction set-finding

• RL is capable of finding more efficient algorithms

Research Question: Can we use RL to find algorithms for eviction set
finding?

Outline

• Background and Motivation
• Challenges
• RL Formulation
• Evaluation
• Conclusion and Future Work

Example Problems RL Solves

• Maze Solving
• Finding Cache Timing Attacks

Maze Solving with RL

State:

Actions:
 Left: 𝑥 ← 𝑥 − 1
 Right: 𝑥 ← 𝑥 + 1
 Up: 𝑦 ← 𝑦 − 1
 Down: 𝑦 ← 𝑦 + 1

𝑥

𝑦

𝑠 = 𝑥, 𝑦 = (6,0)

AutoCAT: RL for Attack on Non-Randomized
Cache

• Agent: Attacker

• Environment: Cache

• Actions
– attacker makes an access

– attacker waits for victim access

– attacker guesses the secret

• Observation
– latency of attacker accesses

• Reward
– guess correct: positive reward

– guess wrong: negative reward

– each step: small negative reward

set

0
1
2

509
510
511

attacker fills

the cache
victim reads

an array

attacker reads

its data again

Slow (miss)

Fast (hit)
Fast (hit)

Fast (hit)
Fast (hit)
Fast (hit)

AutoCAT: Reinforcement Learning for Automated Exploration of Cache-Timing Attacks, Luo, et al, HPCA, 2023

AutoCAT Limitation
• Only works for non-randomized caches

• Agent trained for one-randomization mapping does not work for other
mapping functions

Challenge : needs a way to incorporate different mapping functions in
a randomized cache

Outline

• Background and Motivation
• Challenges
• RL Formulation
• Evaluation
• Conclusion and Future Work

RL Formulation: Evicting N Bits
• Given

• a randomized cache with unknown mapping function
• A victim address to be evicted
• A constant N

• Find
• A RL policy that generates a sequence of memory accesses

• Objective
• minimizes the number of memory accesses (cost)

• Constraint
• the victim address is evicted N times

Outline

• Background and Motivation
• Challenges
• RL Formulation
• Evaluation
• Conclusion and Future Work

Evaluation Goals

• Train an RL agent that minimizes the number of steps to find
minimal eviction set on randomized caches
• Q1: Is the agent able to evict victim address on randomized caches?
• Q2: Are the addresses in the eviction sequence forming an eviction set?
• Q3: Are the eviction set found by the agent a minimal eviction set?
• Q4: how many steps does it take to find a minimal eviction set?

Evaluation Example
• Cache setting

• A 4-set 2-way cache example
• Address used: 0-8
• Address 0-8 is randomly mapped to different cache locations
• Victim address is 0

• RL setting
• Evict victim address N times (N=1, 5)
• Episode length L (number of memory accesses) indicates the complexity

• Ideal case analysis
• N =1, no need to actually “figure out” the eviction set of 0, just occupancy

channel style accessing all addresses, L= 8
• N=5, there is a need to reduce the number of steps to cause one eviction

(figuring out a eviction set), L >= N * size(min_evset) + cost(evset_finding)
• Size(min_evset) = 2, N = 5
• L >= 2 *5 + cost(evset_finding)

2 1

3 5

4 8

7 6

4-set 2-way cache

0

address 0-8 randomly
mapped to different set

Evaluated Cases
Cache
Configuratio
n

Epochs
Trained

Episode
Length

Victim
Evicted

Eviction
Set size

Cache
ways

Steps
taken

2 set 2 way 52 41 yes 2 2 29

4 set 2 way 10 60.35 yes 2 2 48

2 set 4 way 114 38.82 yes 4 4 19

27

Q1: Is the RL agent able to evict victim address on randomized caches?
Q2: Are the addresses in the eviction sequence forming an eviction set?
Q3: Are the eviction set found by the RL agent a minimal eviction set?
Q4: how many steps does it take to find a minimal eviction set?

Outline

• Background and Motivation
• Challenges
• RL Formulation
• Evaluation
• Conclusion and Future Work

Conclusion and Future Work

• Conclusion
• randomized cache increases the difficulty of eviction set-finding
• Reinforcement learning is a useful tool for effective eviction set finding on

randomized caches

• Future Work
• Scale to larger cache sizes and address space
• Complexity analysis and comparison with existing eviction-set finding

algorithms
• Evaluate on partial congruent scheme, e.g., ScatterCache

29

Meta RL1

• Solving a class of problems rather than a single
instance
• Examples

• E.g., solving any maze
• E.g., finding out eviction sequence of any mapping function

• Input: a meta parameter (may not be in the training set)
• Output: a policy corresponding to that parameter

• Using Meta RL, a super agent (policy generator) learns
to solve a class of problems
• In general, an algorithm solves a class of problems
• Thus, this super agent from Meta RL represents an algorithm

• E.g., an algorithm that given the description of the maze, generates
a policy that solves the maze

• E.g., an algorithm that given the mapping function of a cache, finds
eviction set for particular address

1. Meta-Reinforcement Learning of Structured Exploration Strategies, Gupta et al, NIPS, 2018.
2. Reinforcement learning, fast and slow,Botvinick, 2018
3. https://www.uber.com/blog/poet-open-ended-deep-learning/

A class of problems in Meta RL3

Meta RL 2

Hidden Meta Parameter
• Problem: For Randomized caches, the attacker does not see

mapping function directly
• The meta parameter is not visible to the agent
• The input to the super agent is the same

• Solution: random sampling hidden meta parameter from a
distribution during training
• i.e., use different mapping functions (invisible to the agent) during training, so

that the super agent learns the mapping and then find ways to evict the
target address

• Super Agent = An algorithm that evict an address for any mapping
(randomization) function =/= an algorithm that finds eviction sets

	Slide 1: Eviction Set-Finding on Randomized Caches with Reinforcement Learning Mulong Luo and Mohit Tiwari The University of Texas at Austin mulong@utexas.edu
	Slide 2: Outline
	Slide 3: Contention-based Cache Timing Channel and Cache Randomization
	Slide 4: Cache Timing Attacks Arms Race
	Slide 5: The Evolution of Eviction Set-Finding Algorithms
	Slide 6: Reinforcement Learning (RL)
	Slide 7: RL for Games
	Slide 8: RL for Algorithm Development
	Slide 9: Motivation
	Slide 10: Outline
	Slide 11: Example Problems RL Solves
	Slide 12: Maze Solving with RL
	Slide 14: AutoCAT: RL for Attack on Non-Randomized Cache
	Slide 16: AutoCAT Limitation
	Slide 19: Outline
	Slide 20: RL Formulation: Evicting N Bits
	Slide 24: Outline
	Slide 25: Evaluation Goals
	Slide 26: Evaluation Example
	Slide 27: Evaluated Cases
	Slide 28: Outline
	Slide 29: Conclusion and Future Work
	Slide 30: Meta RL1
	Slide 31: Hidden Meta Parameter

